【題目】如圖,、是兩個(gè)全等的等腰直角三角形,.
若將的頂點(diǎn)放在上(如圖),、分別與、相交于點(diǎn)、.求證:;
若使的頂點(diǎn)與頂點(diǎn)重合(如圖),、與相交于點(diǎn)、.試問(wèn)與還相似嗎?為什么?
【答案】(1)見解析;(2)與相似.理由見解析
【解析】
(1)如圖1,先根據(jù)等腰直角三角形的性質(zhì)得∠B=∠C=∠DPE=45°,再利用平角定義得到∠BPG+∠CPF=135°,利用三角形內(nèi)角和定理得到∠BPG+∠BGP=135°,根據(jù)等量代換得∠BGP=∠CPF,加上∠B=∠C,于是根據(jù)有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似即可得到結(jié)論;
(2)如圖2,由于∠B=∠C=∠DPE=45°,利用三角形外角性質(zhì)得∠BGP=∠C+∠CPG=45°+∠CAG,而∠CPF=45°+∠CAG,所以∠AGP=∠CPF,加上∠B=∠C,于是可判斷△PBG∽△FCP.
證明:如圖,
∵、是兩個(gè)全等的等腰直角三角形,
∴,
∴,
在中,∵,
∴,
∴,
∵,
∴;
解:與相似.理由如下:
如圖,∵、是兩個(gè)全等的等腰直角三角形,
∴,
∵,
,
∴,
∵,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在△ABC中,AC=BC=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖放置,頂點(diǎn)P在線段AB上滑動(dòng),三角尺的直角邊PM始終經(jīng)過(guò)點(diǎn)C,并且與CB的夾角∠PCB=α,斜邊PN交AC于點(diǎn)D.
(1)當(dāng)PN∥BC時(shí),判斷△ACP的形狀,并說(shuō)明理由;
(2)點(diǎn)P在滑動(dòng)時(shí),當(dāng)AP長(zhǎng)為多少時(shí),△ADP與△BPC全等,為什么?
(3)點(diǎn)P在滑動(dòng)時(shí),△PCD的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出夾角α的大;若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正比例函數(shù)y=(2m+4)x,求:
(1)m為何值時(shí),函數(shù)圖象經(jīng)過(guò)第一、三象限?
(2)m為何值時(shí),y隨x的增大而減小?
(3)m為何值時(shí),點(diǎn)(1,3)在該函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們新定義一種三角形:若一個(gè)三角形中存在兩邊的平方差等于第三邊上高的平方,則稱這個(gè)三角形為勾股高三角形,兩邊交點(diǎn)為勾股頂點(diǎn).
●特例感知
①等腰直角三角形 勾股高三角形(請(qǐng)?zhí)顚?/span>“是”或者“不是”);
②如圖1,已知△ABC為勾股高三角形,其中C為勾股頂點(diǎn),CD是AB邊上的高.若,試求線段CD的長(zhǎng)度.
●深入探究
如圖2,已知△ABC為勾股高三角形,其中C為勾股頂點(diǎn)且CA>CB,CD是AB邊上的高.試探究線段AD與CB的數(shù)量關(guān)系,并給予證明;
●推廣應(yīng)用
如圖3,等腰△ABC為勾股高三角形,其中,CD為AB邊上的高,過(guò)點(diǎn)D向BC邊引平行線與AC邊交于點(diǎn)E.若,試求線段DE的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是圓圓設(shè)計(jì)的“作等腰三角形一腰上的高線”的尺規(guī)作圖過(guò)程 .
已知:△,.
求作:邊上的高線.
作法:如圖,
①以點(diǎn)為圓心,為半徑畫弧,交于點(diǎn)和點(diǎn);
②分別以點(diǎn)和點(diǎn)為圓心,大于長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn);
③作射線交于點(diǎn).
所以線段就是所求作的邊上的高線.
根據(jù)圓圓設(shè)計(jì)的尺規(guī)作圖過(guò)程,完成下列問(wèn)題:
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面證明.
證明:∵,
∴點(diǎn)在線段的垂直平分線上(__________) (填推理的依據(jù)).
∵__________=__________,
∴點(diǎn)在線段的垂直平分線上.
∴是線段的垂直平分線.
∴⊥.
∴線段就是邊上的高線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,翻折,使點(diǎn)落在斜邊上某一點(diǎn)處,折痕為(點(diǎn)、分別在邊、上)
當(dāng)時(shí),若與相似(如圖),求的長(zhǎng);
當(dāng)點(diǎn)是的中點(diǎn)時(shí)(如圖),與相似嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,以點(diǎn)為中心,將線段逆時(shí)針旋轉(zhuǎn),則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)擲兩枚質(zhì)地均勻的正方體骰子,骰子的六個(gè)面上分別刻有1到6的點(diǎn)數(shù),則這兩枚骰子向上的一面點(diǎn)數(shù)都是奇數(shù)的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某地有一座圓弧形的拱橋,橋下水面寬AB為12米,拱高CD為4米.
(1)求這座拱橋所在圓的半徑.
(2)現(xiàn)有一艘寬5米,船艙頂部為正方形并高出水面3.6米的貨船要經(jīng)過(guò)這里,此時(shí)貨船能順利通過(guò)這座拱橋嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com