如圖,直線y=-
12
x+4分別與x軸,y軸交于點C、D,以O精英家教網(wǎng)D為直徑作⊙A交CD于F,F(xiàn)A的延長線交⊙A于E,交x軸于B.
(1)求點A的坐標;
(2)求△ADF的面積.
分析:(1)本題需先根據(jù)C、D兩點都在直線y=-
1
2
x+4上,得出C、D的坐標,即可求出A點的坐標.
(2)連接OF,得出∠OFD=90°,從而得出△DOF∽△DCO,再設DF=x,則OF=2x,得出x的值,再根據(jù)面積公式即可求出答案.
解答:解:(1)∵直線y=-
1
2
x+4分別與x軸,y軸交于點C、D,
∴C(8,0),D(0,4),
∵⊙A的直徑為OD,
∴A(0,2);

(2)連接OF.
精英家教網(wǎng)∵OD是圓O的直徑,
∴∠OFD=90°,
∴△DOF∽△DCO,
DF
DO
=
OF
OC
,
DF
4
=
OF
8
,
設DF=x,則OF=2x,
則x2+(2x)2=42=16,
∴x2=
16
5

∴△ODF=
1
2
×2x2
=
1
2
×
16
5

=
16
5
,
∴△ADF的面積=
1
2
△ODF
=
8
5
點評:本題主要考查了一次函數(shù)的綜合,在解題時要能夠靈活應用各個知識點,再把它們之間的關(guān)系聯(lián)系起來是本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線EF過平行四邊形ABCD對角線的交點O,分別交AB、CD于E、F,若平行四邊形的面積是12,則△AOE與△DOF的面積和為( 。
A、4B、3C、2D、6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=kx+b(k≠0)與坐標軸分別交于A、B兩點,OA=8,OB=6.動點P從O精英家教網(wǎng)點出發(fā),沿路線O→B→A以每秒1個單位長度的速度運動,到達A點時運動停止.
(1)直接寫出A、B兩點的坐標;
(2)求出直線AB的解析式;
(3)設點P的運動時間為t(秒),△OPA的面積為S,求S與t之間的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);
(4)當S=12時,直接寫出點P的坐標,此時,在坐標軸上是否存在點M,使以O、A、P、M為頂點的四邊形是梯形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=-
1
2
 x
與雙曲線y=
k
x
相交于A、B兩點,點A坐標為(-2,1),則點B坐標為
(2,-1)
(2,-1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=-
1
2
 x
與雙曲線y=
k
x
相交于A(-2,1)、B兩點,則點B坐標為( 。

查看答案和解析>>

科目:初中數(shù)學 來源:學習周報 數(shù)學 華師大七年級版 2009-2010學年 第16期 總第172期 華師大版 題型:022

如圖,直線l1∥12,AB⊥CD,∠1=34°,則∠2=________.

查看答案和解析>>

同步練習冊答案