如圖,OC是⊙O的半徑,AB是弦,且OC⊥AB,點P在⊙O上,∠APC=26°,則∠BOC=________.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1,在平面直角坐標系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點.
(1)求線段AB的長;
(2)若一個扇形的周長等于(1)中線段AB的長,當扇形的半徑取何值時,扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點,垂足為點M,分別求出OM,OC,OD的長,并驗證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標精英家教網(wǎng)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標;
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在直角坐標系xoy中,以x軸的負半軸上一點H為圓心作⊙H與x軸交于A、B兩點,與y軸交于C、D兩點.以C為圓心、OC為半徑作⊙C與⊙H交于F、F兩點,與y軸交于O、Q兩點.直線EF與AC、BC、y軸分別于M、N、G三點.直線y=
34
x+3
經(jīng)過A、C兩點.
(1)求tan∠CNM的值;
(2)連接OM、ON,問:四邊形CMON是怎樣的四邊形?請說明理由.
(3)如圖,R是⊙C中弧EQ上的一動點(不與E點重合),過R作⊙C的切線RT,若RT與⊙H相交于S、T不同兩點.問:CS•CT的值是否發(fā)生變化?若不變,請說明理由,并求其值;若變化,請求其值的變化范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直角梯形OABC的直角頂點是坐標原點,邊OA,OC分別在X軸,y軸的正半軸上.OA∥BC,D是BC上一點,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩個動點,且始終保持∠DEF=45°,如果△AEF是等腰三角形時.將△AEF沿EF對折得△A′EF與五邊形OEFBC重疊部分的面積為
17
8
或1或
41
2
-48
4
17
8
或1或
41
2
-48
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處.
(1)求過E點的反比例函數(shù)解析式.
(2)求出D點的坐標.

查看答案和解析>>

同步練習冊答案