【題目】如圖,平行四邊形ABCD的對角線相交于點(diǎn)O,且AB≠AD,過O作OE⊥BD交BC于點(diǎn)E,若平行四邊形ABCD的周長為20,則△CDE的周長為_____

【答案】10

【解析】試題分析:由平行四邊形ABCD的對角線相交于點(diǎn)O,OE⊥BD,根據(jù)線段垂直平分線的性質(zhì),可得BE=DE,又由平行四邊形ABCD的周長為20,可得BC+CD的長,繼而可得△CDE的周長等于BC+CD

試題解析:四邊形ABCD是平行四邊形,

∴OB=ODAB=CD,AD=BC

平行四邊形ABCD的周長為20

∴BC+CD=10,

∵OE⊥BD,

∴BE=DE

∴△CDE的周長為:CD+CE+DE=CD+CE+BE=CD+BC=10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的直徑是10,圓心O到直線l的距離是5,則直線l和⊙O的位置關(guān)系是(  )
A.相離
B.相交
C.相切
D.外切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x2+kxy+49y2是一個完全平方式,則k=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】螞蟻從點(diǎn)O出發(fā),在一條直線上來回爬行.假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),則爬過的各段路程依次記為(單位:cm):+5,-3,+10,-8,-6,+12,-10.

(1)螞蟻?zhàn)詈笫欠窕氐匠霭l(fā)點(diǎn)O?

(2)螞蟻離開出發(fā)點(diǎn)O最遠(yuǎn)是多少?

(3)在爬行過程中,如果每爬行1獎勵一粒糖,那么螞蟻一共得到多少粒糖?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)Aa+14),B3,2a+2),若直線AB∥x軸,則a的值為( 。

A.2B.1C.-4D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,3和-5所對應(yīng)的點(diǎn)之間的距離是________,到3和5所對應(yīng)的兩點(diǎn)的距離相等的點(diǎn)所對應(yīng)的有理數(shù)是_____ ____,它的倒數(shù)是___ __.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、m均為整數(shù),若x2+mx﹣17=(x+a)(x+b),則整數(shù)m的值有

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,拋物線L: (常數(shù)t>0)與x軸從左到右的交點(diǎn)為B,A,過線段OA的中點(diǎn)MMPx軸,交雙曲線于點(diǎn)P,且OA·MP=12.

1)求k值;

2)當(dāng)t=1時,求AB長,并求直線MPL對稱軸之間的距離;

3)把L在直線MP左側(cè)部分的圖象(含與直線MP的交點(diǎn))記為G,用t表示圖象G最高點(diǎn)的坐標(biāo);

4)設(shè)L與雙曲線有個交點(diǎn)的橫坐標(biāo)為x0,且滿足4x06,通過L位置隨t變化的過程,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一茶葉專賣店經(jīng)銷某種品牌的茶葉,該茶葉的成本價是80元/kg,銷售單價不低于120元/kg.且不高于180元/kg,經(jīng)銷一段時間后得到如下數(shù)據(jù):

銷售單價x(元/kg)

120

130

180

每天銷量y(kg)

100

95

70

設(shè)y與x的關(guān)系是我們所學(xué)過的某一種函數(shù)關(guān)系.

(1)直接寫出y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍;

(2)當(dāng)銷售單價為多少時,銷售利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案