精英家教網(wǎng)已知,如圖1所示,直線PA與x軸交于點(diǎn)A,與y軸交于點(diǎn)C(0,2),且S△AOC=4,直線BD與x軸交于點(diǎn)B,與y軸交于點(diǎn)D,直線PA與直線BD交于點(diǎn)P(2,m),點(diǎn)P在第一象限,連接OP.
(1)求點(diǎn)A的坐標(biāo);
(2)求直線PA的函數(shù)表達(dá)式;
(3)求m的值;
(4)若S△BOP=S△DOP,請(qǐng)你直接寫出直線BD的函數(shù)表達(dá)式.
分析:(1)由于點(diǎn)C(0,2),且S△AOC=4,利用三角形的面積公式可以求出AO的長(zhǎng)度,然后就可以求出點(diǎn)A的坐標(biāo);
(2)由于直線PA經(jīng)過(guò)A、C,利用待定系數(shù)法即可確定直線PA的函數(shù)表達(dá)式;
(3)由于直線PA與直線BD交于點(diǎn)P(2,m),直接把P(2,m)代入直線PA的解析式中即可求出m的值;
(4)由于S△BOP=S△DOP,由此得到P是BD的中點(diǎn),由此可以確定D的坐標(biāo),然后就可以確定直線BD的函數(shù)表達(dá)式.
解答:解:(1)∵點(diǎn)C(0,2),S△AOC=4,
而S△AOC=
1
2
AO•OC,
∴AO=4,
∴點(diǎn)A的坐標(biāo)為(-4,0);

(2)設(shè)直線PA的解析式為y=kx+b,
則有
0=-4k+b
2=b
,
解之得
k=
1
2
b=2
,
∴直線PA的解析式為y=
1
2
x+2;

(3)∵點(diǎn)P(2,m)在直線PA上,
∴m=
1
2
×2+2,
∴m=3;

(4)解:∵S△BOP=S△DOP,△BOP的邊BP上的高和△DOP的邊DP上的高相同,
∴PD=PB,
即P為BD中點(diǎn),精英家教網(wǎng)
過(guò)P作PM⊥OB于M,PN⊥OD于N,
則PM∥OD,PN∥OB,
∴OM=BM,ON=DN,
∴OD=2PM,OB=2PN,
∵P(2,3),
∴PM=3,PN=2,
∴OD=6,OB=4,
即D(0,6),B(4,0),
設(shè)直線BD的解析式是y=kx+b,
6=b
0=4k+b
,
解得:k=-
3
2
,b=6,
∴直線BD的解析式為y=-
3
2
x+6.
點(diǎn)評(píng):此題主要考查了一次函數(shù)的圖象和性質(zhì),也考查了三角形的面積公式及待定系數(shù)法確定函數(shù)的解析式,解題時(shí)首先利用三角形的面積公式確定點(diǎn)的坐標(biāo),然后利用待定系數(shù)法確定函數(shù)的解析式即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

暑假期間,北關(guān)中學(xué)對(duì)網(wǎng)球場(chǎng)進(jìn)行了翻修,在水平地面點(diǎn)A處新增一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行線路是一條拋物線(如圖所示),在地面上落點(diǎn)為B.有同學(xué)在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無(wú)蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi),已知AB=4m,AC=3m,網(wǎng)球飛行最大高度OM=5m,圓柱形桶的直徑為0.5m,高為0.3m(網(wǎng)球精英家教網(wǎng)的體積和圓柱形桶的厚度忽略不計(jì)),以M點(diǎn)為頂點(diǎn),拋物線對(duì)稱軸為y軸,水平地面為x軸建立平面直角坐標(biāo)系.
(1)請(qǐng)求出拋物線的解析式;
(2)如果豎直擺放5個(gè)圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶多少個(gè)時(shí),網(wǎng)球可以落入桶內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖所示,在直角坐標(biāo)系中,矩形OBCD的邊長(zhǎng)OB=4,OD=2.
(1)P是OB上一個(gè)動(dòng)點(diǎn),動(dòng)點(diǎn)Q在PB或其延長(zhǎng)線上運(yùn)動(dòng),OP=PQ,作以PQ為一邊的正方形PQRS,點(diǎn)P從O點(diǎn)開始沿線段OB方向運(yùn)動(dòng),直到點(diǎn)P與點(diǎn)B重合,設(shè)OP=x,正方形PQRS與矩形OBCD重疊部分的面積為y,寫出y與x的函數(shù)關(guān)系式;
(2)在(1)中,當(dāng)x分別取1和3時(shí),y的值分別是多少?
(3)已知直線l:y=ax-a經(jīng)過(guò)一定點(diǎn)A,求經(jīng)過(guò)定點(diǎn)A且把矩形OBCD的面積平均分成兩部分的直線l的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,電工李師傅借助梯子安裝天花板上距地面2.90m的頂燈.已知梯子由兩個(gè)相同的矩形面組成,每個(gè)矩形面的長(zhǎng)都被六條踏板七等分,使用時(shí)梯腳的固定跨度為1m.矩形面與地面所成的角α為78度.李師傅的身高為1.78m,當(dāng)他攀升到頭頂距天花板0.05~0.20m時(shí),安裝起來(lái)比較方便.他現(xiàn)在豎直站立在梯子的第三級(jí)踏板上,請(qǐng)你通過(guò)計(jì)算判斷他安裝是否比較方便?精英家教網(wǎng)
(參考數(shù)據(jù):sin78°≈0.98,cos78°≈0.21,tan78°≈4.70.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在平行四邊形ABCD中,AD=9cm,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以1cm/s的速度沿著A→B→C→A的方向移動(dòng),直到點(diǎn)P到達(dá)點(diǎn)A后才停止.已知△PAD的面積y(單位:cm2)與點(diǎn)P移動(dòng)的時(shí)間x(單位:s)之間的函數(shù)關(guān)系如圖②所示,試解答下列問(wèn)題:

(1)求出平行四邊形ABCD的周長(zhǎng);
(2)請(qǐng)你利用圖①解釋一下圖②中線段MN表示的實(shí)際意義;
(3)求出圖②中a和b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué) 七年級(jí)下冊(cè) 北師大課標(biāo) 題型:044

已知:如圖所示,工人師傅要在墻壁的O處用鉆打孔,要使孔口從墻壁對(duì)面的B點(diǎn)處打開,墻壁厚是35 cm,B點(diǎn)與O點(diǎn)的鉛直距離AB長(zhǎng)是20 cm,工人師傅在旁邊墻上與AO水平的延長(zhǎng)線上截取OC=35 cm,畫CD⊥OC,使CD=20 cm,聯(lián)結(jié)OD,然后沿著DO的方向打孔,結(jié)果鉆頭正好從B點(diǎn)處打出,你知道這是什么道理嗎?你能表達(dá)出此題的意思嗎?

查看答案和解析>>

同步練習(xí)冊(cè)答案