【題目】已知:如圖,BD=DE=EF=FG.

(1)若∠ABC=20°,ABC內符合條件BD=DE=EF=FG的折線(如DE、EF、FG)共有幾條?若∠ABC=10°呢?試一試,并簡述理由.

(2)若∠ABC=m°(0<m<90),你能找出一個折線條數(shù)nm之間的關系嗎?若有,請找出來;若無,請說明理由.

【答案】(1)有4條,若∠ABC=10°,有8條;(2)n<的整數(shù).

【解析】

(1)根據已知可得到幾組相等的角,再根據三角形外角的性質可得到∠EDF、∠FEG、∠AFG、∠AMG分別與∠B的關系,再根據三角形內角和定理即可求解.
(2)結合第(1)題,根據三角形內角和定理可知,需滿足mn<90°,從而不難求解.

(1)有4條,若∠ABC=10°,有8條.

當∠ABC=20°,

BD=DE=EF=FG=GM,

∴∠DEB=B,EDF=EFD,FEG=FGE,GFM=FMG

∵∠EDF=2B=40°,FEG=3B=60°,AFG=4B=80°,AMG=5B=100°,

∴同理:∠AMG將成為下一個等腰三角形的底角

100°+100°>180°

∴不會再由下一條折線

∴共有四條拆線,分別是:DE、EF、FG,GM.

同理:當∠ABC=10°,有8條符合條件的折線.

(2)由(1)可知∠EDF=2B=2m°,FEG=3B=3m°,AFG=4B=4m°,

∵根據三角形內角和定理可知,需滿足mn<90°,

n<的整數(shù).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,則在下列條件:①∠C=D AC=AD ③∠CBA=DBA BC=BD中任選一個能判定ABC≌△ABD的是( )

A. ①②③④ B. ②③④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列判斷正確的是(  )

A. 有2對同位角,2對內錯角,2對同旁內角

B. 有2對同位角,2對內錯角,3對同旁內角

C. 有4對同位角,2對內錯角,4對同旁內角

D. 以上判斷均不正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在四邊形中,∠A=∠C=90°.

(1)如圖1,若BE平分∠ABC,DF平分∠ADC的鄰補角,請寫出BEDF的位置關系,并證明.

(2)如圖2,若BF、DE分別平分∠ABC、∠ADC的鄰補角,判斷DEBF位置關系并證明.

(3)如圖3,若BE、DE分別五等分∠ABC、∠ADC的鄰補角(即∠CDE=,∠CBE=),則∠E=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行于y軸的直尺(一部分)與雙曲線y= (k≠0)(x>0)相交于點A、C,與x軸相交于點B、D,連接AC.已知點A、B的刻度分別為5,2(單位:cm),直尺的寬度為2cm,OB=2cm.

(1)求k的值;
(2)求經過A、C兩點的直線的解析式;
(3)連接OA、OC,求△OAC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由同樣大小的正方形按照一定規(guī)律所組成的,其中第①個圖形中一個有2個正方形,第②個圖形中一共有8個正方形,第③個圖形中一共有16個正方形,…,按此規(guī)律,第⑦個圖形中正方形的個數(shù)為( 。

A. 56 B. 65 C. 68 D. 71

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A、B、C、DE在同一直線上,且ACBDE是線段BC的中點.

(1)點E是線段AD的中點嗎?說明理由;

(2)當AD=10,AB=3時,求線段BE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,CD是經過∠BCA的頂點C的一條直線,CA=CB,E,F(xiàn)是直線CD上的兩點,且∠BEC=CFA=α.

(1)若直線CD經過∠BCA的內部,且E,F(xiàn)在射線CD上,請解決下面兩個問題:

①如圖(a),若∠BCA=90°,α=90°,則BE________CF,EF________|BE-AF|(“>”“<”“=”);

②如圖(b),若0°<BCA<180°,請?zhí)砑右粋關于α與∠BCA關系的條件________,使①中的兩個結論仍然成立,并證明兩個結論成立;

(2)如圖(c),若直線CD經過∠BCA的外部,∠BCA=α,請寫出EF,BE,AF三條線段數(shù)量關系的合理猜想(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,并解決有關問題:

我們知道,,現(xiàn)在我們可以用這一結論來化簡含有絕對值的式子,例如化簡式子時,可令分別求得,分別為的零點值。在有理數(shù)范圍內,零點值可將全體有理數(shù)不重復且不遺漏地分成如下三種情況:(1);(2);(3)≥2。從而化簡代數(shù)式可分為以下3種情況:

(1)時,原式

(2)當時,原式;

(3)≥2時,原式

綜上所述:原式

通過以上閱讀,請你類比解決以下問題:

(1)填空:的零點值分別為

(2)化簡式子。

查看答案和解析>>

同步練習冊答案