【題目】如圖,禁止捕魚期間,某海上稽查隊(duì)在某海域巡邏,上午某一時(shí)刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時(shí)10海里的速度航行,稽查隊(duì)員立即乘坐巡邏船以每小時(shí)14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時(shí)間是( 。

A. 1小時(shí) B. 2小時(shí) C. 3小時(shí) D. 4小時(shí)

【答案】B

【解析】

設(shè)巡邏船從出發(fā)到成功攔截所用時(shí)間為x小時(shí),由題意得出∠ABC=120°,AB=12,BC=10x,AC=14x,過點(diǎn)AADCB的延長(zhǎng)線于點(diǎn)D,在RtABD中,由三角函數(shù)得出BD、AD的長(zhǎng)度,得出CD=10x+6.在RtACD中,由勾股定理得出方程,解方程即可.

解:設(shè)巡邏船從出發(fā)到成功攔截所用時(shí)間為x小時(shí);如圖所示,

由題意得:∠ABC=45°+75°=120°,AB=12,BC=10x,AC=14x,

過點(diǎn)AADCB的延長(zhǎng)線于點(diǎn)D,

RtABD中,AB=12,ABD=45°+(90°﹣75°)=60°,

BD=ABcos60°=AB=6,AD=ABsin60°=,

CD=10x+6.

RtACD中,由勾股定理得:

解得:(不合題意舍去).

答:巡邏船從出發(fā)到成功攔截所用時(shí)間為2小時(shí).

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)P是對(duì)角線AC上的一點(diǎn),PE⊥AB,PF⊥AD,垂足分別為E、F,且PE=PF,平行四邊形ABCD是菱形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校學(xué)生的身高情況,隨機(jī)抽取該校男生、女生進(jìn)行抽樣調(diào)查,已知抽取的樣本中,男生、女生的人數(shù)相同,利用所得數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表:

身高情況分組表(單位:cm)

組別

身高

A

x<160

B

160≤x<165

C

165≤x<170

D

170≤x<175

E

x≥175

根據(jù)圖表提供的信息,回答下列問題:

(1)樣本中,男生的身高眾數(shù)在   組,中位數(shù)在   組;

(2)樣本中,女生身高在E組的人數(shù)有   人;

(3)已知該校共有男生600人,女生480人,請(qǐng)估計(jì)身高在165≤x<175之間的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠C=90°,AC=8,BC=6,角平分線AD、BE相交于點(diǎn)O,則四邊形OECD的面積為(  )

A.5B.C.D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCF中,EBC中點(diǎn),點(diǎn)DCF上,AB=4,CD=1

1)判斷△AED的形狀,并證明;

2ACDE于點(diǎn)N,MAE上,且滿足BM2ME2=EN2CN2,求證:BMAC

3)若△APE是以AE為斜邊的等腰直角三角形,直接寫出BP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校有一批復(fù)印任務(wù),原來由甲復(fù)印社承接,按每10040元計(jì)費(fèi).現(xiàn)乙復(fù)印社表示:若學(xué)校先按月付給一定數(shù)額的承包費(fèi),則可按每10015元收費(fèi).兩復(fù)印社每月收費(fèi)情況如圖所示.根據(jù)圖象回答:

1)設(shè)兩家復(fù)印社每月復(fù)印任務(wù)為張,分別求出甲復(fù)印社的每月復(fù)印收費(fèi)y甲(元)與乙復(fù)印社的每月復(fù)印收費(fèi)y乙(元)與復(fù)印任務(wù)(張)之見的函數(shù)關(guān)系式.

2)乙復(fù)印社的每月承包費(fèi)是多少?

3)當(dāng)每月復(fù)印多少頁時(shí),兩復(fù)印社實(shí)際收費(fèi)相同?

4)如果每月復(fù)印頁數(shù)是1200頁,那么應(yīng)選擇哪個(gè)復(fù)印社.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市為方便行人過馬路,打算修建一座高為4x(m)的過街天橋.已知天橋的斜面坡度i=1:0.75是指坡面的鉛直高度DE(CF)與水平寬度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)請(qǐng)求出天橋總長(zhǎng)和馬路寬度AB的比;

(2)若某人從A地出發(fā),橫過馬路直行(A→E→F→B)到達(dá)B地,平均速度是2.5m/s;返回時(shí)從天橋由BC→CD→DA到達(dá)A地,平均速度是1.5m/s,結(jié)果比去時(shí)多用了12.8s,請(qǐng)求出馬路寬度AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角三角形AOB中,已知AOOB,點(diǎn)P、D分別在ABOB上.

1)∠A=∠B   

2)如圖1中,若POPD,∠OPD45°,證明△BOP是等腰三角形;

3)如圖2中,若AB10,點(diǎn)PAB上移動(dòng),且滿足POPD,DEAB于點(diǎn)E,試問:此時(shí)PE的長(zhǎng)度是否變化?若變化,說明理由;若不變,求出PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方形網(wǎng)格中,ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上)

(1)把ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫出平移后得到的A1B1C1;

(2)把A1B1C1繞點(diǎn)A1按逆時(shí)針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的A1B2C2;

(3)如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(1)、(2)變換的路徑總長(zhǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案