已知拋物線y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點(diǎn)A和B,已知A點(diǎn)坐標(biāo)為(4,0).
(1)求拋物線的解析式.
(2)如圖,連接AB,M為AB的中點(diǎn),∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式.
(3)若拋物線y=-
1
2
x2+bx+4
上有一點(diǎn)F(-k-1,-k2+1),當(dāng)m,n為何值時,∠PMQ的邊過點(diǎn)F?
(1)將點(diǎn)A(4,0)代入拋物線解析式可得:0=-
1
2
×42+4b+4,
解得:b=1,
故拋物線解析式為y=-
1
2
x2+x+4;

(2)拋物線y=-=-
1
2
x2+x+4與x軸的交點(diǎn)為A(4,0),與y軸的交點(diǎn)為B(0,4),
則AB=4
2
,AM=BM=2
2
,
在∠PMQ繞點(diǎn)M在AB同側(cè)旋轉(zhuǎn)過程中,∠MBC=∠DAM=∠PMQ=45°,
在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,
在直線AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°,
則∠BCM=∠AMD,
故△BCM△AMD,
BC
AM
=
BM
AD
,即
n
2
2
=
2
2
m
,n=
8
m
,
故n與m之間的函數(shù)關(guān)系式為n=
8
m
(m>0).

(3)∵F(-k-1,-k2+1)在y=-
1
2
x2+x+4上,
∴-
1
2
(-k-1)2+(-k-1)+4=-k2+1,
化簡得,k2-4k+3=0,
解得:k1=1,k2=3,
即F1(-2,0)或F2(-4,-8),
①M(fèi)F過點(diǎn)M(2,2)和F1(-2,0),設(shè)MF為y=kx+b,
2k+b=2
-2k+b=0
,
解得:
k=
1
2
b=1
,
故直線MF的解析式為y=
1
2
x+1,
直線MF與x軸的交點(diǎn)為(-2,0),與y軸交點(diǎn)為(0,1),
若MP過點(diǎn)F(-2,0),則n=4-1=3,m=
8
3
,
若MQ過點(diǎn)F(-2,0),則m=4-(-2)=6,n=
4
3

②MF過點(diǎn)M(2,2)或點(diǎn)F1(-4,-8),設(shè)MF為y=kx+b,
2k+b=2
-4k+b=-8
,
解得:
k=
5
3
b=-
4
3
,
故直線MF的解析式為y=
5
3
x-
4
3
,
直線MF與x軸的交點(diǎn)為(
4
5
,0),與y軸交點(diǎn)為(0,-
4
3
),
若MP過點(diǎn)F(-4,-8),則n=4-(-
4
3
)=
16
3
,m=
3
2
,
若MQ過點(diǎn)F(-4,-8),則m=4-
4
5
=
16
5
,n=
5
2
,
故當(dāng)
m1=
8
3
n1=3
,
m2=6
n2=
4
3
m3=
3
2
n3=
16
3
m4=
16
5
n4=
5
2
時∠PMQ的邊過點(diǎn)F.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么這個函數(shù)的解析式為( 。
A.y=
1
3
x2+
2
3
x+1
B.y=
1
3
x2+
2
3
x-1
C.y=
1
3
x2-
2
3
x-1
D.y=
1
3
x2-
2
3
x+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(-4,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求拋物線的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物上第三象限內(nèi)的一動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到什么位置時,四邊形ABCP的面積最大?求出此時點(diǎn)P的坐標(biāo)和四邊形ABCP的面積;
(3)點(diǎn)M在拋物線對稱軸上,點(diǎn)N是平面內(nèi)一點(diǎn),是否存在這樣的點(diǎn)M、N,使得以點(diǎn)M、N、B、C為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點(diǎn),點(diǎn)A,C分別在x軸,y軸上,點(diǎn)B坐標(biāo)為(m,
2
)(其中m>0),在BC邊上選取適當(dāng)?shù)狞c(diǎn)E和點(diǎn)F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點(diǎn)B與點(diǎn)G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點(diǎn)O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點(diǎn)P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點(diǎn)P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+x+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且點(diǎn)B的坐標(biāo)為B(-2,0).
(1)求拋物線解析式;
(2)點(diǎn)P在拋物線上,且點(diǎn)P的橫坐標(biāo)為x(-2<x<0),設(shè)△PBC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點(diǎn)M(m,n)是直線AC上的動點(diǎn).設(shè)m=2-a,如果在兩個實(shí)數(shù)m與n之間(不包括m和n)有且只有一個整數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,AO=8,AB=AC,sin∠ABC=
4
5
.CD與y軸交于點(diǎn)E,且S△COE=S△ADE.已知經(jīng)過B,C,E三點(diǎn)的圖象是一條拋物線,求這條拋物線對應(yīng)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平行于x軸的直線AC分別交拋物線y1=x2(x≥0)與y2=
x2
3
(x≥0)于B、C兩點(diǎn),過點(diǎn)C作y軸的平行線交y1于點(diǎn)D,直線DEAC,交y2于點(diǎn)E,則
DE
AB
=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),D是圖象上的一點(diǎn),M為拋物線的頂點(diǎn).已知A(-1,0),C(0,5),D(1,8).
(1)求拋物線的解析式.
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司積極應(yīng)對2008年世界金融危機(jī),及時調(diào)整投資方向生產(chǎn)新產(chǎn)品,由于新產(chǎn)品開發(fā)初期成本高,且市場占有率不高等因素的影響,產(chǎn)品投產(chǎn)上市一年來,公司經(jīng)歷了由初期的虧損到后來逐步盈利的過程(公司對經(jīng)營的盈虧情況每月最后一天結(jié)算1次),公司累積獲得的利潤y(萬元)與銷售時間x(月)之間的函數(shù)關(guān)系(即前x個月的利潤總和y與x之間的關(guān)系)如圖所示,其中曲線OAB為拋物線的一部分,點(diǎn)A為該拋物線的頂點(diǎn),BC是線段.
(1)求該公司累積獲得的利潤y(萬元)與時間x(月)之間的函數(shù)關(guān)系式;
(2)直接寫出x月份所獲得的利潤w(萬元)與時間x(月)之間的函數(shù)關(guān)系式;
(3)前12個月中,幾月份該公司所獲得的利潤最多?最多利潤是多少萬元?

查看答案和解析>>

同步練習(xí)冊答案