【題目】如圖,在矩形ABCD中,點E在AD上,EC平分∠BED.
(1)試判斷△BEC是否為等腰三角形,請說明理由?
(2)若AB=1,∠ABE=45°,求BC的長;
(3)在原圖中畫△FCE,使它與△BEC關于CE的中點O成中心對稱,此時四邊形BCFE是什么特殊平行四邊形,請說明理由.
【答案】
(1)
解:△BEC是否為等腰三角形,理由如下:
∵AD∥BC,
∴∠DEC=∠BCE,
∵∠DEC=∠BEC,
∴∠BEC=∠BCE,
∴△BCE是等腰三角形
(2)
解:
∵在Rt△ABE中,∠ABE=45°,
∴∠AEB=∠ABE=45°,
∴AB=AE=1.
∴BE=,
∴BC=.
(3)
解:四邊形BCFE是菱形,理由如下:
如圖,∵△FCE與△BEC關于CE的中點O成中心對稱,
∴OB=OF,OE=OC,
∴四邊形BCFE是平行四邊形,
又∵BC=BE,
∴四邊形BCFE是菱形.
【解析】(1)易證∠BEC=∠BCE,從而判定△BCE是等腰三角形.
(2)由(1)知BC=BE,而BC是等腰直角△ABE的斜邊,AB=BE,運用勾股定理可求.
(3)根據(jù)中心對稱的性質(zhì),可知四邊形BCFE是平行四邊形,又BC=BE,得出BCFE是菱形.
【考點精析】解答此題的關鍵在于理解中心對稱及中心對稱圖形的相關知識,掌握如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.
科目:初中數(shù)學 來源: 題型:
【題目】(本題滿分8分)某種電子產(chǎn)品共件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為.
(1)該批產(chǎn)品有正品 件;
(2)如果從中任意取出件,利用列表或樹狀圖求取出件都是正品的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AGAB=12,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩地相距216千米,甲、乙分別在A、B兩地,若甲騎車的速度為15千米/時,乙騎車的速度為12千米/時。.
(1)甲、乙同時出發(fā),背向而行,問幾小時后他們相距351千米?
(2)甲、乙相向而行,甲出發(fā)三小時后乙才出發(fā),問乙出發(fā)幾小時后兩人相遇?
(3)甲、乙相向而行,要使他們相遇于AB的中點,乙要比甲先出發(fā)幾小時?
(4)甲、乙同時出發(fā),相向而行,甲到達B處,乙到達A處都分別立即返回,幾小時后相遇?相遇地點距離A有多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點,作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF=∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個數(shù)是( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商有6筐蘋果,以每筐20千克為主,超過的千克數(shù)記為正數(shù),不足的千克數(shù)記為負數(shù),稱后的記錄如下:3,﹣2,2,﹣1,1,4,這6筐蘋果共有多少千克?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,圓M經(jīng)過原點O,直線與x軸、y軸分別相交于A,B兩點.
(1)求出A,B兩點的坐標;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在圓M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;
(3)設(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com