【題目】如圖,在邊長為1的小正方形組成的網格中,ABC的三個頂點均在格點上,請按要求完成下列各題:

1)畫線段ADBC且使AD=BC,連接CD

2)線段AC的長為   ,CD的長為   ,AD的長為_____;

3ACD   三角形,四邊形ABCD的面積為   

【答案】1)如圖所示見解析;(225;(3)直角;10

【解析】

1)利用網格特點畫出AD即可;
2)利用勾股定理計算ACCD、AD的長;
3)先利用勾股定理的逆定理證明ACD為直角三角形,然后利用三角形的面積公式計算四邊形ABCD的面積.

1)如圖所示:

2AC==2;

CD=;

AD==5;

3)∵(22+2=52,

∴△ACD是直角三角形,

S四邊形ABCD=4×6×2×1×4×3×2×1×3×4=10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的頂點為P﹣2,2),與y軸交于點A0,3).若平移該拋物線使其頂點P沿直線移動到點P2﹣2),點A的對應點為A,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題:探究函數(shù)的圖象與性質.小華根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:在函數(shù)y|x|2中,自變量x可以是任意實數(shù);

Ⅰ如表是yx的幾組對應值.

y

3

2

1

0

1

2

3

x

1

0

1

2

1

0

m

①m   ;

An8),B10,8)為該函數(shù)圖象上不同的兩點,則n   ;

Ⅱ如圖,在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:

該函數(shù)的最小值為   ;

該函數(shù)的另一條性質是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點,BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同樣大小的黑色棋子按圖中所示的規(guī)律擺放:

1)填寫下表:

圖形序號

1

2

3

4

5

6

7

圖中棋子數(shù)

6

9

   

   

   

   

   

2)照這樣的方式擺下去,寫出擺第nn為正整數(shù))個圖形所需黑色棋子的顆數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某汽車銷售公司經銷某品牌A款汽車,隨著汽車的普及,其價格也在不斷下降.今年5月份A款汽車的售價比去年同期每輛降價1萬元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬元,今年銷售額只有90萬元.

(1)今年5月份A款汽車每輛售價多少萬元?

(2)為了增加收入,汽車銷售公司決定再經銷同品牌的B款汽車,已知A款汽車每輛進價為7.5萬元,B款汽車每輛進價為6萬元,公司預計用不多于105萬元且不少于99萬元的資金購進這兩款汽車共15輛,有幾種進貨方案?

(3)如果B款汽車每輛售價為8萬元,為打開B款汽車的銷路,公司決定每售出一輛B款汽車,返還顧客現(xiàn)金a萬元,要使(2)中所有的方案獲利相同,a值應是多少?此時,哪種方案對公司更有利?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O的直徑AB=12cmCAB延長線上一點,CPO相切于點P,過點B作弦BDCP,連接PD

1)求證:點P的中點;

2)若C=∠D,求四邊形BCPD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AD上一點,點BCD的中點,且AD9,BD2

1)求AC的長;

2)若點E在直線AD上,且EA1,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,4張如圖1的長為a,寬為bab)長方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S22S1,則ab滿足( 。

A. aB. a2bC. abD. a3b

查看答案和解析>>

同步練習冊答案