【題目】在Rt△ABC中,∠C=Rt∠,若BC:AC=3:4,BD平分∠ABC交AC于點D,則tan∠DBC的值為( 。
A.
B.
C.
D.

【答案】B
【解析】解:作DE⊥AB于E,
在Rt△ABC中,設(shè)BC為3x,則AC為4x,
根據(jù)勾股定理,AB=5x,
設(shè)CD為a,
BD平分∠ABC,則DE=CD=a,
AD=4x﹣a,AE=5x﹣3x=2x,
在Rt△ADE中,
AD2=DE2+AE2
即(4x﹣a)2=a2+(2x)2 ,
解得,a=x,
tan∠DBC=
故選:B.
【考點精析】本題主要考查了解直角三角形的相關(guān)知識點,需要掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,連接OC、BP,過點O作OM∥CD分別交BC與BP于點M、N.下列結(jié)論:
①S四邊形ABCD= ABCD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點的圓的切線.
其中正確的個數(shù)有( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀完成問題:

數(shù)軸上,已知點AB、C.其中,C為線段AB的中點:

(1)如圖,點A表示的數(shù)為-1,點B表示的數(shù)為3,則線段AB的長為 C點表示的數(shù)為 ;

2)若點A表示的數(shù)為-1,C點表示的數(shù)為2,則點B表示的數(shù)為 ;

3)若點A表示的數(shù)為t,點B表示的為t+2,則線段AB的長為 ,C點表示的數(shù)為2,則t= ;

4)點A表示的數(shù)為,點B表示的為,C點位置在-23之間(包括邊界點),若C點表示的數(shù)為,則++的最小值為 ,++的最大值為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的邊BC為直徑的⊙O交AC于點D,過點D作⊙O的切線交AB于點E.
(1)如圖1,若∠ABC=90°,求證:OE∥AC;
(2)如圖2,已知AB=AC,若sin∠ADE= , 求tanA的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課外興趣小組的同學們要測量被池塘相隔的兩棵樹A、B的距離,他們設(shè)計了如圖所示的測量方案:從樹A沿著垂直于AB的方向走到E,再從E沿著垂直于AE的方向走到F,C為AE上一點,其中3位同學分別測得三組數(shù)據(jù):①AC,∠ACB;②EF、DE、AD;③CD,∠ACB,∠ADB.其中能根據(jù)所測數(shù)據(jù)求得A、B兩樹距離的有( 。

A.0組
B.一組
C.二組
D.三組

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀光塔是濰坊市區(qū)的標志性建筑,為測量其高度,如圖,一人先在附近一樓房的底端A點處觀測觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點處觀測觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,根據(jù)以上觀測數(shù)據(jù)可求觀光塔的高CD是m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的“楊輝三角”告訴了我們二項式乘方展開式的系數(shù)規(guī)律.如:第三行的三個數(shù)(1,2,1)恰好對應(yīng)著的展開式的系數(shù);第四行的四個數(shù)恰好對應(yīng)著的展開式的系數(shù);根據(jù)數(shù)表中前五行的數(shù)字所反映的規(guī)律,回答:

(1)寫出圖中第六行括號里的數(shù)字;(請按從左到右的順序填寫)

(2)求;

(3)利用上面規(guī)律計算求值:.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有甲,乙兩個三角形,請你用一條直線把每一個三角形分成兩個等腰三角形,并標出每個三角形各角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】n1,23,…時,由大小相同的小正方形組成的圖形如圖所示,則第10個圖形中小正方形的個數(shù)總和等于(

A. 100 B. 96 C. 144 D. 140

查看答案和解析>>

同步練習冊答案