【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均相等.網(wǎng)格中三個(gè)多邊形(分別標(biāo)記為①,②,③)的頂點(diǎn)均在格點(diǎn)上.被一個(gè)多邊形覆蓋的網(wǎng)格線中,豎直部分線段長(zhǎng)度之和記為m,水平部分線段長(zhǎng)度之和記為n,則這三個(gè)多邊形中滿足m=n的是( )
A.只有②
B.只有③
C.②③
D.①②③
【答案】C
【解析】解:假設(shè)每個(gè)小正方形的邊長(zhǎng)為1,
①:m=1+2+1=4,n=2+4=6,
則m≠n;
②在△ACN中,BM∥CN,
∴ = ,
∴BM= ,
在△AGF中,DM∥NE∥FG,
∴ = , = ,
得DM= ,NE= ,
∴m=2+ =2.5,n= +1+ + =2.5,
∴m=n;
③由②得:BE= ,CF= ,
∴m=2+2+ +1+ =6,n=4+2=6,
∴m=n,
則這三個(gè)多邊形中滿足m=n的是②和③;
故選C.
本題考查了相似多邊形的判定和性質(zhì),對(duì)于有中點(diǎn)的三角形可以利用三角形中位線定理得出;本題線段比較多要依次相加,做到不重不漏.利用相似三角形的判定和性質(zhì)分別求出各多邊形豎直部分線段長(zhǎng)度之和與水平部分線段長(zhǎng)度之和,再比較即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=105°,∠DBC=75°.
(1)求證:BD=CD;
(2)若圓O的半徑為3,求 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是以AB為直徑的⊙M的內(nèi)接四邊形,點(diǎn)A,B在x軸上,△MBC是邊長(zhǎng)為2的等邊三角形,過點(diǎn)M作直線l與x軸垂直,交⊙M于點(diǎn)E,垂足為點(diǎn)M,且點(diǎn)D平分 .
(1)求過A,B,E三點(diǎn)的拋物線的解析式;
(2)求證:四邊形AMCD是菱形;
(3)請(qǐng)問在拋物線上是否存在一點(diǎn)P,使得△ABP的面積等于定值5?若存在,請(qǐng)求出所有的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為3,連接AC,AE平分∠CAD,交BC的延長(zhǎng)線于點(diǎn)E,F(xiàn)A⊥AE,交CB延長(zhǎng)線于點(diǎn)F,則EF的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,CD與⊙O相切于點(diǎn)D,CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六個(gè)完全相同的小長(zhǎng)方形拼成了一個(gè)大長(zhǎng)方形,AB是其中一個(gè)小長(zhǎng)方形的對(duì)角線,請(qǐng)?jiān)诖箝L(zhǎng)方形中完成下列畫圖,要求:①僅用無(wú)刻度直尺,②保留必要的畫圖痕跡.
(1)在圖1中畫出一個(gè)45°角,使點(diǎn)A或點(diǎn)B是這個(gè)角的頂點(diǎn),且AB為這個(gè)角的一邊;
(2)在圖2中畫出線段AB的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC、△DCE、△FEG、△HGI是4個(gè)全等的等腰三角形,底邊BC、CE、EG、GI在同一直線上,且AB=2,BC=1,連接AI,交FG于點(diǎn)Q,則QI= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生的藝術(shù)特長(zhǎng)發(fā)展情況,某校音樂決定圍繞在“舞蹈、樂器、聲樂、戲曲、其他活動(dòng)”項(xiàng)目中,你最喜歡哪一項(xiàng)活動(dòng)(每人只限一項(xiàng))的問題,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,并將調(diào)查結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)在這次調(diào)查中,一共抽查了名學(xué)生,其中喜歡“舞蹈”活動(dòng)項(xiàng)目的人數(shù)占抽查總?cè)藬?shù)的百分比為 . 扇形統(tǒng)計(jì)圖中喜歡“戲曲”部分扇形的圓心角為度.
(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若在“舞蹈、樂器、聲樂、戲曲”項(xiàng)目中任選兩項(xiàng)成立課外興趣小組,請(qǐng)用列表或畫樹狀圖的方法求恰好選中“舞蹈、聲樂”這兩項(xiàng)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)sin45°+sin30°cos60°;
(2)+( )﹣1﹣2cos60°+(2﹣π)0 .
(3)+1﹣3tan230°+2 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com