【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn),若點(diǎn)Р的坐標(biāo)為(其中k為常數(shù),且),則稱點(diǎn)為點(diǎn)P的“k屬派生點(diǎn)”.
例如:的“2屬派生點(diǎn)”為,即.
(1)點(diǎn)的“3屬派生點(diǎn)”的坐標(biāo)為________;
(2)若點(diǎn)的“5屬派生點(diǎn)” 的坐標(biāo)為,求的值;
(3)若點(diǎn)P在x軸的正半軸上,點(diǎn)Р的“k屬派生點(diǎn)”為點(diǎn),且線段的長(zhǎng)座為線段OP長(zhǎng)度的2倍,求k的值.
【答案】(1)(7,-3);(2)-11;(3)
【解析】
(1)根據(jù)“k屬派生點(diǎn)”計(jì)算可得;
(2)根據(jù)“k屬派生點(diǎn)”定義及P′的坐標(biāo)列出關(guān)于x、y的方程組,解之可得;
(3)先得出點(diǎn)P′的坐標(biāo)為(a,ka),由線段PP′的長(zhǎng)度為線段OP長(zhǎng)度的2倍列出方程,解之可得.
(1)點(diǎn)P(-2,3)的“3屬派生點(diǎn)”P′的坐標(biāo)為(-2+3×3,-2×3+3),即(7,-3),
故答案為:(7,-3);
(2)依題意,得
點(diǎn)的“5屬派生點(diǎn)”的坐標(biāo)為,
即,
∵的坐標(biāo)為
∴,
∴,
∴的值為-11
(3)∵點(diǎn)在x軸的正半軸上,
∴,.
∴點(diǎn)Р的坐標(biāo)為,點(diǎn)的坐標(biāo)為,
∴線段的長(zhǎng)為點(diǎn)到x軸距離為,
∵P在x軸正半軸,線段OP的長(zhǎng)為a,
根據(jù)題意,有,
∴,
∵,
∴.
從而.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
(1)本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為 ,圖①中的值為 ;
(2)求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+4(k≠0)與x軸、y軸分別交于點(diǎn)B,A,直線y=-2x+1與y軸交于點(diǎn)C,與直線y=kx+4交于點(diǎn)D,△ACD的面積是.
(1)求直線AB的表達(dá)式;
(2)設(shè)點(diǎn)E在直線AB上,當(dāng)△ACE是直角三角形時(shí),求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=9,AC=6,BC=12,點(diǎn)M在AB邊上,且AM=3,過點(diǎn)M作直線MN與AC邊交于點(diǎn)N,使截得的三角形與原三角形相似,則MN=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,每個(gè)小方格都是邊長(zhǎng)為的正方形,的頂點(diǎn)均在格點(diǎn)上,點(diǎn)的坐標(biāo)是.
先將沿軸正方向向上平移個(gè)單位長(zhǎng)度,再沿軸負(fù)方向向左平移個(gè)單位長(zhǎng)度得到,畫出,點(diǎn)坐標(biāo)是________;
將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,畫出,并求出點(diǎn)的坐標(biāo)是________;
我們發(fā)現(xiàn)點(diǎn)、關(guān)于某點(diǎn)中心對(duì)稱,對(duì)稱中心的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】豫讓橋豫東市場(chǎng)某個(gè)體商戶購(gòu)進(jìn)某種電子產(chǎn)品的進(jìn)價(jià)是50元/個(gè),根據(jù)市場(chǎng)調(diào)研發(fā)現(xiàn)售價(jià)是80元/個(gè)時(shí),每周可賣出160個(gè).若銷售單價(jià)每個(gè)降低2元,則每周可多賣出20個(gè);若商戶計(jì)劃下周利潤(rùn)達(dá)到5200元,則此電子產(chǎn)品的售價(jià)為每個(gè)多少元?設(shè)銷售價(jià)格每個(gè)降低x元(x為偶數(shù)),則所列方程為( 。
A. (80﹣x)(160+20x)=5200 B. (30﹣x)(160+20x)=5200
C. (30﹣x)(160+10x)=5200 D. (50﹣x)(160+10x)=5200
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程mx2+(3﹣m)x﹣3=0(m為實(shí)數(shù),m≠0).
(1) 試說明:此方程總有兩個(gè)實(shí)數(shù)根.
(2) 如果此方程的兩個(gè)實(shí)數(shù)根都為正整數(shù),求整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)在一次測(cè)驗(yàn)中解答的填空題:①若x2=a2,則x=a;②方程2x(x-1)-x+1=0的解是x=1;③已知三角形兩邊分別為2和9,第三邊長(zhǎng)是方程x2-14x+48=0的根,則這個(gè)三角形的周長(zhǎng)是17或19.其中答案完全正確的題目個(gè)數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-2,4),B點(diǎn)坐標(biāo)為(-4,2);
(2)在(1)的前提下,在第二象限內(nèi)的格點(diǎn)上找一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無理數(shù),則C點(diǎn)的坐標(biāo)是;
(3)求((2)中△ABC的周長(zhǎng)(結(jié)果保留根號(hào));
(4)畫出((2)中△ABC關(guān)于y軸對(duì)稱的△A'B'C'.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com