如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(0,10),點B的坐標(biāo)為(5,0),點P從A開始在線段AO上以3單位/秒的速度移動,點Q從B開始在線段BO上以1單位/秒的速度移動,當(dāng)其中一個點到達O時,另一點也隨即停止運動.設(shè)運動精英家教網(wǎng)的時間為t(秒).以P、Q為圓心作⊙P和⊙Q,且⊙P和⊙Q的半徑分別為4和1.
(1)在運動的過程中若⊙P與Rt△AOB的一邊相切,求此時動點P的坐標(biāo);
(2)若⊙P與線段AB有兩個公共點,求t的范圍;
(3)在運動的過程中,是否存在某一時刻⊙P和⊙Q相切?若存在,求出t的值;若不存在,說明理由.
分析:(1)分為兩種情況:當(dāng)⊙P與AB相切時,OP=10-4
5
,即P1(0,10-4
5
);當(dāng)⊙P與OB相切時,OP=4,所以P2(0,4);
(2)根據(jù)4≤OP<4
5
時,⊙P與線段AB有兩個公共點,可求得
4
3
≤t<
4
5
3
;
(3)若⊙P和⊙Q相切,則能夠形成直角三角形OPQ,根據(jù)勾股定理計算即可.
解答:解:(1)當(dāng)⊙P與AB相切時,
設(shè)AP=x,則有x:5
5
=4:5,解得x=4
5
,所以O(shè)P=10-4
5

即P1(0,10-4
5
);
當(dāng)⊙P與OB相切時,OP=4,所以P2(0,4).

(2)當(dāng)4≤OP<4
5
時,⊙P與線段AB有兩個公共點,即
4
3
≤t<
4
5
3


(3)若兩圓外切,(10-3t)2+(5-t)2=25,
則t=2或t=5(舍去);
若兩圓內(nèi)切,(10-3t)2+(5-t)2=9,
t=
35±
65
10

只取t=2,或t=
35-
65
10
點評:主要考查了直線與圓的位置關(guān)系和圓與圓的位置關(guān)系.在解決此類動點問題時一定要把所有的情況考慮進去不要漏掉某種情況.先求對應(yīng)線段的長度再根據(jù)速度求得時間,并會靈活運用勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點P的坐標(biāo)為(3,4),將OP繞原點O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點.反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點A,點A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點A的坐標(biāo);
(2)如果經(jīng)過點A的一次函數(shù)圖象與x軸的負(fù)半軸交于點B,AC⊥x軸于點C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點D在反比例函數(shù)y=
6
x
的圖象上,且點D在直線AC的右側(cè),作DE⊥x軸于點E,當(dāng)△ABC與△CDE相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊答案