【題目】如圖,已知在Rt△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)P、Q分別在邊AC、射線CB上,且AP=CQ,過(guò)點(diǎn)P作PM⊥AB,垂足為點(diǎn)M,聯(lián)結(jié)PQ,以PM、PQ為鄰邊作平行四邊形PQNM,設(shè)AP=x,平行四邊形PQNM的面積為y.
(1)當(dāng)平行四邊形PQNM為矩形時(shí),求∠PQM的正切值;
(2)當(dāng)點(diǎn)N在△ABC內(nèi),求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
(3)當(dāng)過(guò)點(diǎn)P且平行于BC的直線經(jīng)過(guò)平行四邊形PQNM一邊的中點(diǎn)時(shí),直接寫(xiě)出x的值.
【答案】(1);(2)y=(0≤x<);(3)或.
【解析】
(1)當(dāng)四邊形PQMN是矩形時(shí),PQ∥AB.根據(jù)tan∠PQM=求解即可.
(2)如圖1中,延長(zhǎng)QN交AB于K.求出MK,PM,根據(jù)y=PMMK求解即可.
(3)分兩種情形:①如圖3﹣1中,當(dāng)平分MN時(shí),D為MN的中點(diǎn),作NE∥BC交PQ于E,作NH⊥CB交CB的延長(zhǎng)線于H,EG⊥BC于G.根據(jù)EG=PC構(gòu)建方程求解.②如圖3﹣2中,當(dāng)平分NQ時(shí),D是NQ的中點(diǎn),作DH⊥CB交CB的延長(zhǎng)線于H.根據(jù)PC=GH構(gòu)建方程求解即可.
解:(1)在Rt△ACB中,∵∠C=90°,AC=8,BC=6,
∴AB===10,
當(dāng)四邊形PQMN是矩形時(shí),PQ∥AB.
∴tan∠PQM===.
(2)如圖1中,延長(zhǎng)QN交AB于K.
由題意BQ=6﹣x,QN=PM=x,AM=x,KQ=BQ=,BK=BQ=,MK
∴MK=AB﹣AM﹣BK=,
∵QN<QK,
∴x<,
∴x<,
∴y=PMMK=(0≤x<).
(3)①如圖3﹣1中,當(dāng)平分MN時(shí),D為MN的中點(diǎn),作NE∥BC交PQ于E,作NH⊥CB交CB的延長(zhǎng)線于H,EG⊥BC于G.
∵PD∥BC,EN∥BC,
∴PD∥NE,
∵PE∥DN,
∴四邊形PDNE是平行四邊形,
∴PE=DN,
∵DN=DM,PQ=MN,
∴PE=EQ,
∵EG∥PC,
∴CG=GQ,
∴EG=PC,
∵四邊形EGHN是矩形,
∴NH=EG=NQ=PM=x,PC=8﹣x,
∴x=(8﹣x),
解得x=.
②如圖3﹣2中,當(dāng)平分NQ時(shí),D是NQ的中點(diǎn),作DH⊥CB交CB的延長(zhǎng)線于H.
∵DH=PC,
∴8﹣x=x,
解得x=,
綜上所述,滿足條件x的值為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市用1200元購(gòu)進(jìn)甲乙兩種文具,甲種文具進(jìn)價(jià)12元/個(gè),售價(jià)為15元/個(gè).乙種文具進(jìn)價(jià)10元/個(gè),售價(jià)為12元/個(gè).全部售完后獲利270元.
(1)求該超市購(gòu)進(jìn)甲乙兩種文具各多少個(gè)?
(2)若該超市以原價(jià)再次購(gòu)進(jìn)這兩種文具,且購(gòu)進(jìn)甲種文具數(shù)量不變,乙種文具購(gòu)進(jìn)數(shù)量是第一次的2倍,乙種文具按原售價(jià)出售,甲種文具降價(jià)銷售,當(dāng)兩種文具銷售完畢后,要使再次購(gòu)進(jìn)的文具獲利不少于340元,甲種文具每個(gè)最低售價(jià)應(yīng)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB為⊙O的直徑,點(diǎn)C在⊙O上,且OC⊥AB,過(guò)點(diǎn)C的弦CD與線段OB相交于點(diǎn)E,滿足∠AEC=65°,連接AD,則∠BAD等于( )
A.20°B.25°C.30°D.32.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生全部參加“禁毒知識(shí)競(jìng)賽”,從中抽取了部分學(xué)生,將他們的競(jìng)賽成績(jī)進(jìn)行統(tǒng)計(jì)后分為,,,四個(gè)等次,并將統(tǒng)計(jì)結(jié)果繪制成如下的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)抽取了_______名學(xué)生成績(jī);
(2)扇形統(tǒng)計(jì)圖中等級(jí)所在扇形的圓心角度數(shù)是_________;
(3)為估算全校八年級(jí)“禁毒知識(shí)競(jìng)賽”平均分,現(xiàn)將、、、依次記作分、分、分、分,請(qǐng)估算該校八年級(jí)知識(shí)競(jìng)賽平均分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 是⊙O的內(nèi)接三角形, , 為⊙O中上一點(diǎn),延長(zhǎng)至點(diǎn),使.
(1)求證: ;
(2)若,求證:AD+BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖像與x軸交于點(diǎn)(-2,0)、(),且,與y軸的正半軸的交點(diǎn)在(0,2)的下方,則下列結(jié)論中:①ab>0;②4a-2b+c=0;③2a-b+1<0;④a<b<c,其中正確的結(jié)論有( ).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AD//BC,E是BC的中點(diǎn),AD="5" cm,BC="12" cm,CD=cm,∠C=45°,點(diǎn)P從B點(diǎn)出發(fā),沿著BC方向以1cm/s運(yùn)動(dòng),到達(dá)點(diǎn)C停止,設(shè)P運(yùn)動(dòng)了ts.
(1)當(dāng)t為何值時(shí)以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為直角梯形;
(2)當(dāng)t為何值時(shí)以點(diǎn)P、A、D、E為頂點(diǎn)的四邊形為平行四邊形;
(3)點(diǎn)P在BC邊上運(yùn)動(dòng)的過(guò)程中,以P、A、D、E為頂點(diǎn)的四邊形能否構(gòu)成菱形?如能,請(qǐng)求出t值,如不能請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“分塊計(jì)數(shù)法”:對(duì)有規(guī)律的圖形進(jìn)行計(jì)數(shù)時(shí),有些題可以采用“分塊計(jì)數(shù)”的方法.
例如:圖1有6個(gè)點(diǎn),圖2有12個(gè)點(diǎn),圖3有18個(gè)點(diǎn),……,按此規(guī)律,求圖10、圖n有多少個(gè)點(diǎn)?
我們將每個(gè)圖形分成完全相同的6塊,每塊黑點(diǎn)的個(gè)數(shù)相同(如圖),這樣圖1中黑點(diǎn)個(gè)數(shù)是6×1=6個(gè);圖2中黑點(diǎn)個(gè)數(shù)是6×2=12個(gè):圖3中黑點(diǎn)個(gè)數(shù)是6×3=18個(gè);所以容易求出圖10、圖n中黑點(diǎn)的個(gè)數(shù)分別是 、 .
請(qǐng)你參考以上“分塊計(jì)數(shù)法”,先將下面的點(diǎn)陣進(jìn)行分塊(畫(huà)在答題卡上),再完成以下問(wèn)題:
(1)第5個(gè)點(diǎn)陣中有 個(gè)圓圈;第n個(gè)點(diǎn)陣中有 個(gè)圓圈.
(2)小圓圈的個(gè)數(shù)會(huì)等于271嗎?如果會(huì),請(qǐng)求出是第幾個(gè)點(diǎn)陣.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,若O為BC邊的中點(diǎn),則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結(jié)論,解決如下問(wèn)題:如圖,在矩形DEFG中,已知DE=4,EF=3,點(diǎn)P在以DE為直徑的半圓上運(yùn)動(dòng),則PF2+PG2的最小值為( 。
A. B. C. 34 D. 10
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com