【題目】如圖,已知∠AOB=160°,OD是∠AOB內(nèi)任意一條射線,OE平分∠AOD,OC平分∠BOD.
(1)求∠EOC的度數(shù);
(2)若∠BOC=19°,求∠EOD的度數(shù).
【答案】(1)80°;(2)61°.
【解析】
(1)先根據(jù)角平分線定義得到∠EOD=∠AOD,∠DOC=∠DOB,再求出∠EOC=∠EOD+∠DOC=∠AOB=80°;
(2)先根據(jù)角平分線定義得到∠DOB=2∠BOC=38°,再求出∠AOD=∠AOB﹣∠DOB=122°,然后根據(jù)角平分線定義得出∠EOD=∠AOD=61°.
解:(1)∵OE平分∠AOD,OC平分∠BOD,
∴∠EOD=∠AOD,∠DOC=∠DOB,
∴∠EOC=∠EOD+∠DOC=∠AOD+∠DOB=(∠AOD+∠DOB)=∠AOB=80°;
(2)∵OC平分∠BOD,
∴∠DOB=2∠BOC=38°,
∴∠AOD=∠AOB﹣∠DOB=122°,
∵OE平分∠AOD,
∴∠EOD=∠AOD=61°.
科目:初中數(shù)學 來源: 題型:
【題目】用100厘米長的鉛絲,彎折成一個長方形的模型.
(1)設長方形的面積為S平方厘米,長方形的長為厘米,用的式子表示S;
(2)當S=400平方厘米時,求的值;
(3)當S=625平方厘米時,求的值;
(4)S的值會不會為700平方厘米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在線段AB上,M、N分別是線段AC、BC的中點,
(1)若AC=7cm,BC=5cm,求線段MN的長;
(2)若AB=a,點C為線段AB上任意一點,你能用含a的代數(shù)式表示MN的長度嗎?若能,請寫出結(jié)果與過程,若不能,請說明理由;
(3)若將(2)中“點C為線段AB上任意一點”改為“點C為直線AB上任意一點”,其余條件不變,(2)中的結(jié)論是否仍然成立?請畫圖并寫出說明過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍.小穎在小亮出發(fā)后50min才乘上纜車,纜車的平均速度為180m/min.設小亮出發(fā)xmin后行走的路程為ym,圖中的折線表示小亮在整個行走過程中y與x的函數(shù)關系.
(1)小亮行走的總路程是________m;他途中休息了________min.
(2)①當時,求y與x的函數(shù)關系式.
②當小穎到達纜車終點時,小亮離纜車終點的路程是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,AC平分DAB,12,試說明AB與CD的位置關系,并予以證明:
(2)如圖2,在(1)的結(jié)論下,AB的下方點P滿足ABP30,G是CD上任一點,PQ平分BPG,PQ∥GN,GM平分DGP,下列結(jié)論:
①DGPMGN的值不變;
②MGN的度數(shù)不變.
可以證明,只有一個是正確的,請你做出正確的選擇并求值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校餐廳計劃購買12張餐桌和一批餐椅,現(xiàn)從甲、乙兩商場了解到:同一型號的餐桌報價每張均為200元,餐椅報價每把均為50元.甲商場稱:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌椅均按報價的八五折銷售.那么多少餐椅,到甲商場購買更優(yōu)惠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為4個單位長度的正方形ABCD的邊AB與等腰直角三角形EFG的斜邊FG重合,△EFG
以每秒1個單位長度的速度沿BC向右勻速運動(保持FG⊥BC),當點E運動到CD邊上時△EFG停止
運動.設△EFG的運動時間為t秒,△EFG與正方形ABCD重疊部分的面積為S,則S關于t的函數(shù)大
致圖象為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D、F是AB邊上的兩點,以DF為直徑的⊙O與BC相交于點E,連接EF,過F作FG⊥BC于點G,其中∠OFE=∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB=,⊙O的半徑為r,求△EHG的面積(用含r的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點D 作于點E,點F在邊CD上,DF=BE,連接AF,BF.
(1)求證:四邊形EBFD是矩形;
(2)若AE=3,DE=4,DF=5,求證:AF平分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com