【題目】如圖,AB是⊙O的直徑,DF⊥AB于點D,交弦AC于點E,F(xiàn)C=FE.
(1)求證:FC是⊙O的切線;
(2)若⊙O的半徑為5,cos∠ECF= ,求弦AC的長.

【答案】
(1)證明:連接OC.

∵FC=FE(已知),

∴∠FCE=∠FEC(等邊對等角);

又∵∠AED=∠FEC(對頂角相等),

∴∠FCE=∠AED(等量代換);

∵OA=OC,

∴∠OAC=∠OCA(等邊對等角);

∴∠FCE+∠OCA=∠AED+∠OAC;

∵DF⊥AB,

∴∠ADE=90°,

∴∠FCE+∠OCA=90°,即FC⊥OC,

∴FC是⊙O的切線


(2)解:連接BC.

∵AB是⊙O的直徑,⊙O的半徑為5,

∴∠ACB=90°(直徑所對的圓周角是直角),AB=2OA=10,

∴∠A+∠ABC=90°.

∵DF⊥AB,

∴∠A+∠AED=90°,

∴∠A+∠ABC=∠A+∠AED,即∠ABC=∠AED;

由(1)知,∠AED=∠FEC=∠ECF,

∴BC=ABcos∠ABC=ABcos∠ECF=10× =4,

∴AC= = =2


【解析】(1)連接OC.欲證FC是⊙O的切線,只需證明FC⊥OC即可;(2)連接BC.利用(1)中的∠AED=∠FEC=∠ECF、圓周角定理求得BC=ABcos∠ABC=ABcos∠ECF=10× =4;然后在直角三角形ABC中利用勾股定理求得AC的長度即可.
【考點精析】掌握勾股定理的概念和圓周角定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于拋物線y=x2﹣2x+1,下列說法錯誤的是( 。
A.開口向上
B.與x軸有兩個重合的交點
C.對稱軸是直線x=1
D.當x>1時,y隨x的增大而減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣ x+b與拋物線的另一個交點為D.

(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用水平線和豎起線將平面分成若干個邊長為1的小正方形格子,小正方形的頂點稱為格點,以格點為頂點的多邊形稱為格點多邊形.設(shè)格點多邊形的面積為S,該多邊形各邊上的格點個數(shù)和為a,內(nèi)部的格點個數(shù)為b,則S= a+b﹣1(史稱“皮克公式”).
小明認真研究了“皮克公式”,并受此啟發(fā)對正三角形網(wǎng)格中的類似問題進行探究:正三角形網(wǎng)格中每個小正三角形面積為1,小正三角形的頂點為格點,以格點為頂點的多邊形稱為格點多邊形,下圖是該正三角形格點中的兩個多邊形:

根據(jù)圖中提供的信息填表:

格點多邊形各邊上的格點的個數(shù)

格點多邊形內(nèi)部的格點個數(shù)

格點多邊形的面積

多邊形1

8

1

多邊形2

7

3

一般格點多邊形

a

b

S

則S與a、b之間的關(guān)系為S=(用含a、b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】
(1)計算: ﹣4sin45°+(﹣2012)0;
(2)化簡: ÷(x+1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等邊△ABC的邊長為2,P是BC邊上的任一點(與B、C不重合),連接AP,以AP為邊向兩側(cè)作等邊△APD和等邊△APE,分別與邊AB、AC交于點M、N(如圖1).

(1)求證:AM=AN;
(2)設(shè)BP=x.
①若BM= ,求x的值;
②求四邊形ADPE與△ABC重疊部分的面積S與x之間的函數(shù)關(guān)系式以及S的最小值;
③連接DE分別與邊AB、AC交于點G、H(如圖2).當x為何值時,∠BAD=15°?此時,以DG、GH、HE這三條線段為邊構(gòu)成的三角形是什么特殊三角形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字1,﹣2,3,﹣4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為( 。
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,已知AD>AB.

(1)實踐與操作:作∠BAD的平分線交BC于點E,在AD上截取AF=AB,連接EF;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)猜想并證明:猜想四邊形ABEF的形狀,并給予證明.

查看答案和解析>>

同步練習(xí)冊答案