【題目】如圖,∠AOB=30°,點(diǎn)P為∠AOB內(nèi)一點(diǎn),OP=8.點(diǎn)M、N分別在OA、OB上.當(dāng)△PMN周長(zhǎng)最小時(shí),下列結(jié)論:①∠MPN等于120°;②∠MPN等于100°;③△PMN周長(zhǎng)最小值為4;④△PMN周長(zhǎng)最小值為8,其中正確的是( )
A.①③B.②③C.①④D.②④
【答案】C
【解析】
分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)P1、P2,連P1、P2,交OA于M,交OB于N,△PMN的周長(zhǎng)=P1P2,然后證明△OP1P2是等邊三角形,即可求解.
分別作點(diǎn)P關(guān)于OA、OB的對(duì)稱點(diǎn)P1、P2,連P1、P2,交OA于M,交OB于N,
則OP1=OP=OP2,∠P1OA=∠POA,∠POB=∠P2OB,
MP=P1M,PN=P2N,則△PMN的周長(zhǎng)的最小值=P1P2
∴∠P1OP2=2∠AOB=60°,
∴△OP1P2是等邊三角形,
∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=120°
△PMN的周長(zhǎng)=P1P2,
∴P1P2=OP1=OP2=OP=8,
∴①④正確,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,.點(diǎn)在邊上,點(diǎn)在邊上,點(diǎn)、在對(duì)角線上.若四邊形是菱形,則的長(zhǎng)是( )
A. 2 B. 3 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點(diǎn)D,連接CD并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,圖2,圖3,在中,分別以,為邊,向外作正三角形,正四邊形,正五邊形,,相交于點(diǎn)O.
①如圖1,求證:≌;
②探究:如圖1,________;如圖2,_______;如圖3,_______;
(2)如圖4,已知:,是以為邊向外所作正n邊形的一組鄰邊:,是以為邊向外所作正n邊形的一組鄰邊,,的延長(zhǎng)相交于點(diǎn)O.
①猜想:如圖4, (用含n的式子表示);
②根據(jù)圖4證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】山西特產(chǎn)專賣店銷售核桃,其進(jìn)價(jià)為每千克40元,按每千克60元出售,平均每天可售出100千克,后來(lái)經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請(qǐng)回答:
(1)每千克核桃應(yīng)降價(jià)多少元?
(2)在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場(chǎng),該店應(yīng)按原售價(jià)的幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為直徑,是直徑上一動(dòng)點(diǎn)(不與點(diǎn),,重合),過點(diǎn)作直線交于,兩點(diǎn),是上一點(diǎn)(不與點(diǎn),重合),且,直線交直線于點(diǎn).
如圖,當(dāng)點(diǎn)在線段上時(shí),試判斷與的大小關(guān)系,并證明你的結(jié)論;
當(dāng)點(diǎn)在線段上,且時(shí),其它條件不變.
①請(qǐng)你在圖中畫出符合要求的圖形,并參照?qǐng)D標(biāo)記字母;
②判斷中的結(jié)論是否還成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于(, 0)和(, 0), 其中,與軸交于正半軸上一點(diǎn).下列結(jié)論:①;②;③a>b;④.其中正確結(jié)論的序號(hào)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形中,于點(diǎn),于點(diǎn),且、分別為、的中點(diǎn),(如圖)則等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖矩形的對(duì)角線、交于點(diǎn),過點(diǎn)作,且,連接,判斷四邊形的形狀并說明理由.
(2)如果題目中的矩形變?yōu)榱庑,結(jié)論應(yīng)變?yōu)槭裁矗空f明理由.
(3)如果題目中的矩形變?yōu)檎叫,結(jié)論又應(yīng)變?yōu)槭裁?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com