【題目】如圖,是直線上一點,為任一條射線,平分平分.

1)找出圖中的補(bǔ)角,的補(bǔ)角;

2)若,求的度數(shù);

3具有怎樣的數(shù)量關(guān)系?說明理由.

【答案】1的補(bǔ)角;的補(bǔ)角;2,;3,理由見解析

【解析】

1)根據(jù)互為補(bǔ)角的和等于180°找出即可;

2)根據(jù)角平分線的定義求出∠COD的度數(shù)即可,先求出∠AOC的度數(shù),再根據(jù)角平分線的定義解答;

3)根據(jù)角平分線的定義表示出∠COD與∠EOC,然后整理即可得解.

1)∵OD平分∠BOC,

∴∠COD=BOD.

∵∠AOD+BOD=180°,

∴∠AOD的補(bǔ)角為∠BOD,∠COD.

同理:∠BOE的補(bǔ)角為∠AOE,∠COE;

2)∵OD平分∠BOC,∠BOC=68°,

∴∠CODBOC68°=34°.

∵∠BOC=68°,

∴∠AOC=180°﹣∠BOC=180°﹣68°=112°.

OE平分∠AOC,

∴∠EOCAOC112°=56°;

3)∵OD平分∠BOCOE平分∠AOC,

∴∠CODBOC,∠EOCAOC

∴∠COD+EOC(BOC+AOC)180°=90°,

即∠COD+EOC=90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy,拋物線Cy=mx2+4x+1

1當(dāng)拋物線C經(jīng)過點A-56,求拋物線的表達(dá)式及頂點坐標(biāo);

2當(dāng)直線y=-x+l與直線y=x+3關(guān)于拋物線C的對稱軸對稱時,m的值;

3若拋物線Cy=mx2+4x+lm0x軸的交點的橫坐標(biāo)都在-l0之間不包括-l0).結(jié)合函數(shù)的圖象,m的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點作垂線,圍成面積為的小正方形EFGH,已知AMRtABM較長直角邊,AM=EF,則正方形ABCD的面積為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中, △ABC的三個頂點的位置如圖所示,點A'的坐標(biāo)是

(-2,2, 現(xiàn)將ABC平移,使點A變換為點A',BC分別是B、C的對應(yīng)點。

1)請畫出平移后的像A'B'C'(不寫畫法) ,并直接寫出點B、C的坐標(biāo):

B ( ) 、C ( )

2)若ABC 內(nèi)部一點P的坐標(biāo)為(a,b),則點P   的對應(yīng)點P 的坐標(biāo)是 ( ) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市正在開展“食品安金城市”創(chuàng)建活動,為了調(diào)查學(xué)生對食品安全知識的了解情況,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行問卷.將調(diào)查結(jié)果按照“:正常了解;:了解;:了解較少;:不了解”四類分別進(jìn)行統(tǒng)計,并繪制了如圖所示的兩幅統(tǒng)計圖(不完整).

請根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了_____名學(xué)生;

(2)扇形統(tǒng)計圖中所在扇形的圓心角度數(shù)為_____度;

(3)將條形統(tǒng)計圖補(bǔ)充完整;

(4)若該校共有名學(xué)生,請你估計對食品安全知識“非常了解”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018春季環(huán)境整治活動中,某社區(qū)計劃對面積為1600m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用5天.

(1)求甲、乙兩工程隊每天能完成綠化的面積;

(2)設(shè)甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務(wù),求y關(guān)于x的函數(shù)關(guān)系式;

(3)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r(r>1),P是圓內(nèi)與圓心C不重合的點,⊙C的“完美點”的定義如下:若直線CP與⊙C交于點A,B,滿足|PA-PB|=2,則稱點P為⊙C的“完美點”,如圖為⊙C及其“完美點”P的示意圖.

(1)當(dāng)⊙O的半徑為2時,

①點M(,0)  ⊙O的“完美點”,點N(0,1)  ⊙O的“完美點”,點T(-,-   ⊙O的“完美點”(填“是”或者“不是”);

②若⊙O的“完美點”P在直線y=x上,求PO的長及點P的坐標(biāo);

(2)⊙C的圓心在直線y=x+1上,半徑為2,若y軸上存在⊙C的“完美點”,求圓心C的縱坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A、B兩店分另選5名銷售員某月的銷售額(單位:萬元)進(jìn)行分析,數(shù)據(jù)如下圖表(不完整):

平均數(shù)

中位數(shù)

眾數(shù)

A

8.5

   

   

B

   

8

10

1)根據(jù)圖a數(shù)據(jù)填充表格b所缺的數(shù)據(jù);

2)如果A店想讓一半以上的銷售員達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為(

A.750平方千米B.75平方千米C.15平方千米D.7.5平方千米

查看答案和解析>>

同步練習(xí)冊答案