【題目】(1)閱讀理解

如圖,點(diǎn),在反比例函數(shù)的圖象上,連接,取線段的中點(diǎn).分別過(guò)點(diǎn),軸的垂線,垂足為,,,交反比例函數(shù)的圖象于點(diǎn).點(diǎn),的橫坐標(biāo)分別為,,.小紅通過(guò)觀察反比例函數(shù)的圖象,并運(yùn)用幾何知識(shí)得出結(jié)論:AE+BG=2CFCF>DF,由此得出一個(gè)關(guān)于,之間數(shù)量關(guān)系的命題:若,則______

(2)證明命題

小東認(rèn)為:可以通過(guò),則的思路證明上述命題.

小晴認(rèn)為:可以通過(guò),,且,則的思路證明上述命題.

請(qǐng)你選擇一種方法證明(1)中的命題.

【答案】(1)(2)證明見(jiàn)解析.

【解析】

1)求出AE,BGDF,利用AE+BG=2CF,可得

2)利用求差法比較大小.

(1),,,,,

.

(2),

,

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為 6 的等邊△ABC 中,D AC 上一點(diǎn),AD=2,P BD 上一點(diǎn),連接 CP,以 CP 邊,在 PC 的右側(cè)作等邊△CPQ,連接 AQ BD 延長(zhǎng)線于 E,當(dāng)△CPQ 面積最小時(shí),QE=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1是我校聞瀾閣前樓梯原設(shè)計(jì)稿的側(cè)面圖,,,樓梯的坡比為1,為了增加樓梯的舒適度,將其改造成如圖2,測(cè)量得,的中點(diǎn),過(guò)點(diǎn)分別作的角平分線于點(diǎn),于點(diǎn),其中為樓梯,為平地,則平地的長(zhǎng)度為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù) y的圖象如圖所示,則二次函數(shù) y =ax 22x和一次函數(shù) ybx+a 在同一平面直角坐標(biāo)系中的圖象可能是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是規(guī)格為的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)坐標(biāo)為,點(diǎn)坐標(biāo)為;

2)在第二象限內(nèi)的格點(diǎn)上畫(huà)一點(diǎn),使點(diǎn)與線段組成一個(gè)以為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù), 點(diǎn)坐標(biāo)是________,的周長(zhǎng)是_________(結(jié)果保留根號(hào));

3)畫(huà)出以點(diǎn)為旋轉(zhuǎn)中心、旋轉(zhuǎn)后的,連結(jié),試說(shuō)出四邊形是何特殊四邊形, 并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD是邊長(zhǎng)為4的正方形,ECD上一點(diǎn),且DE1,F為射線BC上一動(dòng)點(diǎn),過(guò)點(diǎn)EEGAF于點(diǎn)P,交直線AB于點(diǎn)G.則下列結(jié)論中:①AFEG;②若∠BAF=∠PCF,則PCPE;③當(dāng)∠CPF45°時(shí),BF1;④PC的最小值為2.其中正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)上,且是以為底的等腰直角三角形,若,則_______,______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點(diǎn)C,直線ly4分別交兩函數(shù)圖象于點(diǎn)A14)和點(diǎn)B,過(guò)點(diǎn)BBDl交反比例函數(shù)圖象于點(diǎn) D

1)求反比例函數(shù)的解析式;

2)當(dāng)BD2AB時(shí),求點(diǎn)B的坐標(biāo);

3)在(2)的條件下,直接寫(xiě)出不等式mx的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案