如圖,已知:△ABC是⊙O的內(nèi)接三角形,∠B=30°,若AC=6,則圖中陰影部分的面積是( )

A.2
B.6
C.
D.6π-9
【答案】分析:根據(jù)等邊三角形的判定得出△AOC是等邊三角形,進而得出等邊三角形的面積,再利用扇形AOC的面積公式,即可得出圖中陰影部分的面積.
解答:解:連接AO,CO,過點O作ON⊥AC于點N,
∵△ABC是⊙O的內(nèi)接三角形,∠B=30°,
∴∠AOC=60°,
∵AO=CO,
∴△AOC是等邊三角形,
∵AC=6,ON⊥AC,
∴AN=NC=3,
∴ON==3,
∴△AOC的面積為:×6×3=9
扇形AOC的面積為:=6π,
∴圖中陰影部分的面積是:6
故選:B.
點評:此題主要考查了等邊三角形的判定和扇形面積求法和等邊三角形面積求法等知識,根據(jù)已知得出等邊三角形的高是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B=90°,AB=6cm,BC=8cm,點P從點A開始,沿AB邊向點B以1cm/S的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,(其中一點到達終點,另一點也停止運動),設(shè)經(jīng)過t秒.
(1)如果P、Q分別從A、B兩點同時出發(fā),那么幾秒后,△PBQ的面積等于△ABC的面積的
13

(2)在(1)中,△PQB的面積能否等于10cm2?請說明理由.
(3)若P、Q分別從A、B兩點出發(fā),那么幾秒后,PQ的長度等于6cm?
(4)P、Q在移動的過程中,是否存在某一時刻t,使得PQ∥AC?若存在求出t的值,若不存在請說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:△ABC中,∠1=∠2,且AE=AD,BE和CD相交于F.求證:BF=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:△ABC為等邊三角形,D、F分別為射線BC、射線AB邊上的點,BD=AF,以AD為邊作等邊△ADE.
(1)如圖①所示,當(dāng)點D在線段BC上時:
①試說明:△ACD≌△CBF;②判斷四邊形CDEF的形狀,并說明理由;
(2)如圖②所示,當(dāng)點D在BC的延長線上時,判斷四邊形CDEF的形狀,并說明理由.
(3)當(dāng)點D在射線BC上移動到何處時,∠DEF=30°,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=36°,BD為∠ABC的平分線,則
AD
AC
的值等于
5
-1
2
5
-1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,D是邊BC的中點,點E在邊BA的延長線上,AE=AB,
BA
=
a
BC
=
b
,那么
DE
=
2
a
-
1
2
b
2
a
-
1
2
b

查看答案和解析>>

同步練習(xí)冊答案