【題目】已知直線l過(guò)點(diǎn)P(2, 2),且與函數(shù)y= (x>0)的圖象相交于A, B兩點(diǎn),與x軸、y軸分別交于點(diǎn)C, D,如圖所示,四邊形OFBM為矩形,面積為3.

(1)k的值;

(2)當(dāng)點(diǎn)B的橫坐標(biāo)為3時(shí),求直線l的解析式及線段BC的長(zhǎng).

【答案】1k=3;(2)直線l解析:y=-x+4,BC=

【解析】

1)利用待定系數(shù)法即可解決問(wèn)題;

2)求出B、C兩點(diǎn)坐標(biāo),求出直線BC的解析式即可解決問(wèn)題.

解:(1)設(shè)點(diǎn)B的坐標(biāo)為(x,y),由題意得:BF=y,BM=x

∵矩形OMBF的面積為3,

xy=3

B在雙曲線y 上,

k=3;

2)∵點(diǎn)B的橫坐標(biāo)為3,點(diǎn)B在雙曲線上,

∴點(diǎn)B的坐標(biāo)為(3,1),

設(shè)直線l的解析式為y=ax+b,

∵直線l過(guò)點(diǎn)P22),B31),

解得 ,

∴直線l的解析式為y=-x+4,

∵直線lx軸交于點(diǎn)C40),

BC .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O是正方形ABCD兩對(duì)角線的交點(diǎn),分別延長(zhǎng)OD到點(diǎn)到點(diǎn)E,使,然后以OG、OE為鄰邊作正方形OEFG,連接

求證:;

正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)得到正方形,如圖2

在旋轉(zhuǎn)過(guò)程中,當(dāng)是直角時(shí),求的度數(shù);

若正方形ABCD的邊長(zhǎng)為1,在旋轉(zhuǎn)過(guò)程中,求長(zhǎng)的最大值和此時(shí)的度數(shù),直接寫(xiě)出結(jié)果不必說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線(m>0)與x軸的交點(diǎn)為A,B

1)求拋物線的頂點(diǎn)坐標(biāo);

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).

當(dāng)m1時(shí),求線段AB上整點(diǎn)的個(gè)數(shù);

若拋物線在點(diǎn)A,B之間的部分與線段AB所圍成的區(qū)域內(nèi)(包括邊界)恰有6個(gè)整點(diǎn),結(jié)合函數(shù)的圖象,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A、C分別在y軸、x軸的正半軸上,點(diǎn)O在原點(diǎn).現(xiàn)將正方形OABCO點(diǎn)順時(shí)針旋轉(zhuǎn),當(dāng)A點(diǎn)第一次落在直線y=x上時(shí)停止旋轉(zhuǎn).旋轉(zhuǎn)過(guò)程中,AB邊交直線y=x于點(diǎn)M,BC邊交x軸于點(diǎn)N(如圖1).

(1)求邊AB在旋轉(zhuǎn)過(guò)程中所掃過(guò)的面積;

(2)設(shè)△MBN的周長(zhǎng)為p,在旋轉(zhuǎn)正方形OABC的過(guò)程中,p值是否有變化?請(qǐng)證明你的結(jié)論;

(3)設(shè)MN=m,當(dāng)m為何值時(shí)△OMN的面積最小,最小值是多少?并直接寫(xiě)出此時(shí)△BMN內(nèi)切圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一艘觀光游船從港口A以北偏東60°的方向出港觀光,航行80海里至C處時(shí)發(fā)生了側(cè)翻沉船事故,立即發(fā)出了求救信號(hào),一艘在港口正東方向的海警船接到求救信號(hào),測(cè)得事故船在它的北偏東37°方向,馬上以40海里每小時(shí)的速度前往救援,

1)求點(diǎn)C到直線AB的距離;

2求海警船到達(dá)事故船C處所需的大約時(shí)間.(溫馨提示:sin53°≈0.8cos53°≈0.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對(duì)稱(chēng)中心作點(diǎn)P(0,2)的對(duì)稱(chēng)點(diǎn)P1,以B為對(duì)稱(chēng)中心作點(diǎn)P1的對(duì)稱(chēng)點(diǎn)P2,以C為對(duì)稱(chēng)中心作點(diǎn)P2的對(duì)稱(chēng)點(diǎn)P3,以D為對(duì)稱(chēng)中心作點(diǎn)P3的對(duì)稱(chēng)點(diǎn)P4,…,重復(fù)操作依次得到點(diǎn)P1,P2,…,則點(diǎn)P2010的坐標(biāo)是(  )

A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=2,AD=6,P為邊AD上一點(diǎn),且AP=2,在對(duì)角線BD上尋找一點(diǎn)M,使AM+PM最小,則AM+PM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式.方式一:先購(gòu)買(mǎi)會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買(mǎi)會(huì)員證,每次游泳付費(fèi)9.

1)什么情況下,購(gòu)會(huì)員證與不購(gòu)證付一樣的錢(qián)?

2)什么情況下,購(gòu)會(huì)員證比不購(gòu)證更合算?

3)什么情況下,不購(gòu)會(huì)員證比購(gòu)證更合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類(lèi)中選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類(lèi)

A

B

C

D

E

出行方式

共享單車(chē)

步行

公交車(chē)

的士

私家車(chē)

根據(jù)以上信息,回答下列問(wèn)題:

(1)參與本次問(wèn)卷調(diào)查的市民共有 人,其中選擇B類(lèi)的人數(shù)有 人;

(2)在扇形統(tǒng)計(jì)圖中,求A類(lèi)對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該市約有12萬(wàn)人出行,若將A,B,C這三類(lèi)出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案