【題目】如圖,已知正比例函數(shù)yax與反比例函數(shù)y的圖象交于點A32

1)求上述兩函數(shù)的表達式;

2Mm,n)是反比例函數(shù)圖象上的一個動點,其中0m3,過點M作直線MBx軸,交y軸于點B;過點A點作直線ACy軸交x軸于點C,交直線MB于點D.若s四邊形OADM6,求點M的坐標,并判斷線段BMDM的大小關系,說明理由;

3)探索:x軸上是否存在點P.使△OAP是等腰三角形?若存在,求出點P的坐標; 若不存在,說明理由.

【答案】(1)反比例函數(shù)的表達式為:y,正比例函數(shù)的表達式為yx;(2)BMDM;(3)存在,,0)或(﹣0)或(6,0)或(,0

【解析】

1)將A32)分別代入y=,y=ax中,得ak的值,進而可得正比例函數(shù)和反比例函數(shù)的表達式;

2)由SOMB=SOAC=|k|=3,可得S矩形OBDC=12;即OCOB=12;進而可得mn的值,故可得BMDM的大;比較可得其大小關系;

3)存在.由(2)可知D3,4),根據(jù)矩形的性質得A3,2),分為OA為等腰三角形的腰,OA為等腰三角形的底,分別求P點坐標.

解:(1)將A3,2)分別代入y,yax中,得:2,3a2

k6a,

∴反比例函數(shù)的表達式為:y

正比例函數(shù)的表達式為yx;

2BMDM

理由:∵SOMBSOAC×|k|3

S矩形OBDCS四邊形OADM+SOMB+SOAC3+3+612

OCOB12

OC3

OB4

n4

m=,即點M的坐標為(,4

MB,MD3,

MBMD;

3)存在.

由(2)得A32),OA

OA為等腰三角形的腰時,P,0)或(﹣,0)或(60),

OA為等腰三角形的底,P,0).

∴滿足條件的P點坐標為(0)或(﹣,0)或(6,0)或(,0).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】兩地相距千米,甲、乙兩人都從地去地,圖中分別表示甲、乙兩人所走路程(千米)與時間(小時)之間的關系.對于下列說法:①乙晚出發(fā)小時;②乙出發(fā)小時后追上甲;③甲的速度是千米/小時;④乙先到達地,其中正確的個數(shù)是(

A.B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為探測某座山的高度AB,某飛機在空中C處測得山頂A處的俯角為31°,此時飛機的飛行高度為CH=4千米;保持飛行高度與方向不變,繼續(xù)向前飛行2千米到達D處,測得山頂A處的俯角為50°,求此山的高度AB.(參考數(shù)據(jù):tan31°≈0.6,1an50°≈1.2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知,將一個直角三角形紙片()的一個頂點放在點處,現(xiàn)將三角形紙片繞點任意轉動,平分斜邊的夾角,平分.

1)將三角形紙片繞點轉動(三角形紙片始終保持在的內(nèi)部),若,則_______

2)將三角形紙片繞點轉動(三角形紙片始終保持在的內(nèi)部),若射線恰好平方,若,求的度數(shù);

3)將三角形紙片繞點重合位置逆時針轉到重合的位置,猜想在轉動過程中的數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上A點表示數(shù),B點示數(shù),C點表示數(shù),是最小的正整數(shù),且、滿足

(1)=__________,=__________=__________;

(2)若將數(shù)軸折疊,使得A點與C點重合,則點B與數(shù)__________表示的點重合;

(3)若點A、點B和點C分別以每秒2個單位、1個單位長度和4個單位長度的速度在數(shù)軸上同時向左運動,假設秒鐘過后,A、B、C三點中恰有一點為另外兩點的中點,求的值;

(4)若點A、點B和點C分別以每秒2個單位、1個單位長度和4個單位長度的速度在數(shù)軸上同時向左運動時,小聰同學發(fā)現(xiàn):當點CB點右側時,BC+3AB的值是個定值,求此時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據(jù)調查結果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號)

根據(jù)以上信息,解答下列問題:

(1)該班共有  名學生;

(2)在扇形統(tǒng)計圖中,185型校服所對應的扇形圓心角的大小為  ;

(3)該班學生所穿校服型號的眾數(shù)為   ,中位數(shù)為  ;

(4)如果該校預計招收新生600名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務的負責人,你認為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果A、BC三點在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點,那么M,N兩點之間的距離為( )

A. 5 cm B. 1 cm C. 51 cm D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有一組鄰邊相等的凸四邊形叫做“準菱形”.利用該定義完成以下各題:

(1) 理解

填空:如圖1,在四邊形ABCD中,若     (填一種情況),則四邊形ABCD是“準菱形”;

(2)應用

證明:對角線相等且互相平分的“準菱形”是正方形;(請畫出圖形,寫出已知,求證并證明)

(3) 拓展

如圖2,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,將Rt△ABC沿∠ABC的平分線BP方向平移得到△DEF,連接AD,BF,若平移后的四邊形ABFD是“準菱形”,求線段BE的長.

查看答案和解析>>

同步練習冊答案