【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx4a≠0的圖象與x軸交于A20、C80兩點,與y軸交于點B,其對稱軸與x軸交于點D

1求該二次函數(shù)的解析式;

2如圖1,連結(jié)BC,在線段BC上是否存在點E,使得CDE為等腰三角形?若存在,求出所有符合條件的點E的坐標(biāo);若不存在,請說明理由;

3如圖2,若點Pm,n是該二次函數(shù)圖象上的一個動點其中m0n0,連結(jié)PB,PD,BD,求BDP面積的最大值及此時點P的坐標(biāo).

【答案】1y=x2x4282,0,4、;3)(,

【解析】

試題分析:1二次函數(shù)y=ax2+bx4a≠0的圖象與x軸交于A20、C8,0兩點,,解得,該二次函數(shù)的解析式為y=x2x4

2由二次函數(shù)y=x2x4可知對稱軸x=3,D3,0,C8,0CD=5,由二次函數(shù)y=x2x4可知B0,4,設(shè)直線BC的解析式為y=kx+b,,解得,直線BC的解析式為y=x4,設(shè)Em, m4,當(dāng)DC=CE時,EC2=m82+m42=CD2,即m82+m42=52,解得m1=82,m2=8+2舍去,E82,;當(dāng)DC=DE時,ED2=m32+m42=CD2,即m32+m42=52,解得m3=0,m4=8舍去E0,4;當(dāng)EC=DE時,m82+m42=m32+m42解得m5=5.5E,.綜上,存在點E,使得CDE為等腰三角形,所有符合條件的點E的坐標(biāo)為82,、0,4、,

3過點Py軸的平行線交x軸于點FP點的橫坐標(biāo)為m,P點的縱坐標(biāo)為m2m4,∵△PBD的面積S=S梯形SBODSPFD=m[4m2m4]m3[m2m4]×3×4=m2+m=m2+,當(dāng)m=時,PBD的最大面積為P的坐標(biāo)為,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有理數(shù)a,b滿足ab<0,a+b>0,7a+2b+1=﹣|b﹣a|,則 的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一個正比例函數(shù)與一個一次函數(shù)的圖象交于點A1,4)且一次函數(shù)的圖象與x軸交于點B30),坐標(biāo)原點為O

1)求正比例函數(shù)與一次函數(shù)的解析式;

2)若一次函數(shù)交與y軸于點C,求ACO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為的正方形的邊長增加,得到一個邊長為的正方形.在圖1的基礎(chǔ)上,某同學(xué)設(shè)計了一個解釋驗證的方案(詳見方案1

方案1.如圖2,用兩種不同的方式表示邊長為的正方形的面積.

方式1

方式2

因此,

1)請模仿方案1,在圖1的基礎(chǔ)上再設(shè)計一種方案,用以解釋驗證

2)如圖3,在邊長為的正方形紙片上剪掉邊長為的正方形,請在此基礎(chǔ)上再設(shè)計一個方案用以解釋驗證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AB延長線上一點,D為線段BC上一點,CD2BD,E為線段AC上一點,CE2AE,若圖中所有線段的長度之和是線段AD長度的7倍,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E是邊CD上一點,將ADE沿AE折疊至處,CE交于點F,若∠B=52°,DAE=20°,則的度數(shù)為(

A. 40° B. 36° C. 50° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城鎮(zhèn)在對一項工程招標(biāo)時,接到甲、乙兩個工程隊的投標(biāo)書,每施工一天,需付甲隊工程款2萬元,付乙隊工程款1.5萬元.現(xiàn)有三種施工方案:()由甲隊單獨完成這項工程,恰好如期完工;()由乙隊單獨完成這項工程,比規(guī)定工期多6天;()由甲乙兩隊后,剩下的由乙隊單獨做,也正好能如期完工.小聰同學(xué)設(shè)規(guī)定工期為天,依題意列出方程:.

1)請將()中被墨水污染的部分補充出來:________

2)你認(rèn)為三種施工方案中,哪種方案既能如期完工,又節(jié)省工程款?說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A. 清明時節(jié)雨紛紛是必然事件

B. 了解路邊行人邊步行邊低頭看手機的情況可以采取對在路邊行走的學(xué)生隨機發(fā)放問卷的方式進行調(diào)查

C. 射擊運動員甲、乙分別射擊10次且擊中環(huán)數(shù)的方差分別是0.51.2,則甲隊員的成績好

D. 分別寫有三個數(shù)字 -1,-2,4的三張卡片(卡片的大小形狀都相同),從中任意抽取兩張,則卡片上的兩數(shù)之積為正數(shù)的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小王同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).

月均用水量(單位:t)

頻數(shù)

百分比

2≤x<3

2

4%

3≤x<4

12

24%

4≤x<5

   

   

5≤x<6

10

20%

6≤x<7

   

12%

7≤x<8

3

6%

8≤x<9

2

4%

(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;

(2)如果家庭月均用水量大于或等于4t且小于7t”為中等用水量家庭,請你估計總體小王所居住的小區(qū)中等用水量家庭大約有多少戶?

(3)從月均用水量在2≤x<3,8≤x<9這兩個范圍內(nèi)的樣本家庭中任意抽取2個,請用列舉法(畫樹狀圖或列表)求抽取出的2個家庭來自不同范圍的概率.

查看答案和解析>>

同步練習(xí)冊答案