【題目】如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k= .
科目:初中數學 來源: 題型:
【題目】如圖,(圖1,圖2),四邊形ABCD是邊長為4的正方形,點E在線段BC上,∠AEF=90°,且EF交正方形外角平分線CP于點F,交BC的延長線于點N, FN⊥BC.
(1)若點E是BC的中點(如圖1),AE與EF相等嗎?
(2)點E在BC間運動時(如圖2),設BE=x,△ECF的面積為y。
①求y與x的函數關系式;
②當x取何值時,y有最大值,并求出這個最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知一次函數y=﹣2x+b與反比例函數y=的圖象有兩個交點A(m,3)和B,且一次函數y=﹣2x+b與x軸、y軸分別交于點C、D.過點A作AE⊥x軸于點E;過點B作BF⊥y軸于點F,點F的坐標為(0,﹣2),連接EF,tan∠FEO=2.
(1)求一次函數與反比例函數的解析式;
(2)求四邊形AEFD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線經過A(-1,0),B(3,0)與點C(0,3),連接BC,點P是直線BC是上方的一個動點(且不與B,C重合).
(1)求拋物線的解析式;
(2)求△PBC的面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形OABC中,OA=3,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于D、E,且BD=2AD
(1)求k的值和點E的坐標;
(2)點P是線段OC上的一個動點,是否存在點P,使∠APE=90°?若存在,求出此時點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=﹣x+4與x軸、y軸分別交于點A、B,拋物線y=﹣(x﹣m)2+n的頂點P在直線y=﹣x+4上,與y軸交于點C(點P、C不與點B重合),以BC為邊作矩形BCDE,且CD=2,點P、D在y軸的同側.
(1)n=________(用含m的代數式表示),點C的縱坐標是________(用含m的代數式表示);
(2)當點P在矩形BCDE的邊DE上,且在第一象限時,求拋物線對應的函數解析式;
(3)直接寫出矩形BCDE有兩個頂點落在拋物線上時m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】 二次函數y=-x2+bx+c的圖象如圖所示,下列幾個結論:①對稱軸為直線x=2;②當y≥0時,x<0或x>4:③函數表達式為y=-x2+4x;④當x≤0時,y隨x的增大而增大.其中正確的結論有( 。
A.①②③④B.①②③C.①③④D.②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC是等邊三角形,點D是△ABC(包含邊界)平面內一點,連接CD,將線段CD繞C逆時針旋轉60°得到線段CE,連接BE,DE,AD,并延長AD交BE于點P.
(1)觀察填空:當點D在圖1所示的位置時,填空:
①與△ACD全等的三角形是______.
②∠APB的度數為______.
(2)猜想證明:在圖1中,猜想線段PD,PE,PC之間有什么數量關系?并證明你的猜想.
(3)拓展應用:如圖2,當△ABC邊長為4,AD=2時,請直接寫出線段CE的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6cm,BC=8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm和1cm,FQ⊥BC,分別交AC、BC于點P和Q,設運動時間為t秒(0<t<4).
(1)連接EF,若運動時間t=秒時,求證:△EQF是等腰直角三角形;
(2)連接EP,當△EPC的面積為3cm2時,求t的值;
(3)在運動過程中,當t取何值時,△EPQ與△ADC相似.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com