【題目】某中學需要刻錄一批電腦光盤,若到電腦公司刻錄,每張需8元(包括空白光盤費);若學校自刻,出租用刻錄機需120元外,每張光盤還需成本4元(包括空白光盤費)。問刻錄這批電腦光盤,該校如何選擇,才能使費用較少?

【答案】當刻錄超過30張時,學校自己刻錄比較節(jié)省費用;當刻錄等于30張時,學校自己刻錄和去電腦公司刻錄費用相同;當刻錄低于30張時,去電腦公司刻錄比較節(jié)省費用.

【解析】

設這批光盤有x張,分別求出到電腦公司刻錄和學校自己刻錄花費的錢數(shù),列出不等式,求出費用較少的方案.

設需刻錄x張光盤,則

到電腦公司刻錄需y=8x()

自刻錄需y=120+4x(),

yy=4x120=4(x30)

∴當x>30,y>y;x=30,y=y;0<x<30,y<y.

即當刻錄超過30張時,學校自己刻錄比較節(jié)省費用;

當刻錄等于30張時,學校自己刻錄和去電腦公司刻錄費用相同;

當刻錄低于30張時,去電腦公司刻錄比較節(jié)省費用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A. “明天降雨的概率是80%”表示明天有80%的時間都在降雨

B. “拋一枚硬幣正面朝上的概率為表示每拋2次就有一次正面朝上

C. “彩票中獎的概率為1%”表示買100張彩票肯定會中獎

D. “拋一枚正方體骰子,朝上的點數(shù)為2的概率為表示隨著拋擲次數(shù)的增加,拋出朝上的點數(shù)為2”這一事件發(fā)生的頻率穩(wěn)定在附近

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1=2CFAB,DEAB,求證:FGBC.

證明:CFAB,DEAB 已知

∴∠BED=90°,BFC=90°

∴∠BED=BFC ( )

EDFC

∴∠1=BCF ( )

∵∠2=1 已知

∴∠2=BCF ( )

FGBC ( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),E是直線AB、CD內部一點,AB∥CD,連接EA、ED.

(1)探究:

①若∠A=30°,∠D=40°,則∠AED等于多少度?

②若∠A=20°,∠D=60°,則∠AED等于多少度?

③在圖(1)中∠AED、∠EAB、∠EDC有什么數(shù)量關系,并證明你的結論.

(2)拓展:如圖(2),射線FE與矩形ABCD的邊AB交于點E,與邊CD交于點F,①②③④分別是被射線FE隔開的四個區(qū)域(不含邊界,其中③④位于直線AB的上方),P是位于以上四個區(qū)域上點,猜想:∠PEB、∠PFC、∠EPF之間的關系.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是井用手搖抽水機的示意圖,支點A的左端是一手柄,右端是一彎鉤,點F,A,B始終在同一直線上,支點A距離地面100cm,與手柄端點F之間的距離AF=50cm,與彎鉤端點B之間的距離AB=10cm.KT為進水管.

(1)在一次取水過程中,將手柄AF繞支點A旋轉到AF′,且與水平線MN的夾角為20°,且此時點B′,K,T在一條線上,求點F′離地面的高度.

(2)當不取水時,將手柄繞支點A逆時針旋轉90°至點F′′位置,求端點F′′與進水管KT之間的距離.(忽略進水管的粗細)(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,AB的垂直平分線分別交AC、AB于點DE,ABCBDC 的周長分別為40cm25cm ,則BC_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】銅梁永輝商場今年二月份以每桶40元的單價購進1000桶甲、乙兩種食用油,然后以甲種食用油每桶75元、乙桶食用油每桶60元的價格售完,共獲利29000元.

1)求該商場分別購進甲、乙兩種食用油多少桶?

2)為了增加銷售量,獲得最大利潤,根據(jù)銷售情況和市場分析,在進價不變的情況下該經(jīng)銷商決定調整價格,將甲種食用油的價格在二月份的基礎上下調20%,乙種食用油的價格上漲a%,但甲的銷售量還是較二月下降了a%,而乙的銷售量卻上升了25%,結果三月份的銷售額比二月份增加了1000元,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊△ABC中,AO是∠BAC的角平分線,D為AO上一點,以CD為一邊且在CD下方作等邊△CDE,連接BE.

(1)求證:△ACD≌△BCE;

(2)延長BE至Q,P為BQ上一點,連接CP、CQ使CP=CQ=5,若BC=8時,求PQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,分別為,邊上的高,連接,過點與點,中點,連接,

1)如圖,若點與點重合,求證:;

2)如圖,請寫出之間的關系并證明.

查看答案和解析>>

同步練習冊答案