【題目】在平面直角坐標(biāo)系中,點(diǎn)A2,0),B04),若以B,O,C為頂點(diǎn)的三角形與△ABO全等,則點(diǎn)C的坐標(biāo)不能為( 。

A.0,﹣4B.(﹣2,0C.2,4D.(﹣2,4

【答案】A

【解析】

根據(jù)全等三角形的判定定理畫圖并逐一判斷即可.

:如圖所示:

A2,0),B04

OA=2,OB=4,∠AOB=90°

當(dāng)C1坐標(biāo)為(0,﹣4)時(shí),B、O、C1同一條直線上,不能構(gòu)成三角形,故選A;

當(dāng)C2坐標(biāo)為(﹣2,0)時(shí),OC2= OA=2,∠C2O B =AOB=90°,OB=OB

∴△C2O B≌△AOB,故不選B;

當(dāng)C3坐標(biāo)為2,4時(shí),BC3= OA=2,∠C3 B O =AOB=90°,OB=BO

∴△C3BO≌△AOB,故不選C

當(dāng)C4坐標(biāo)為24時(shí),BC4= OA=2,∠C4BO =AOB=90°,OB=BO

∴△C4BO≌△AOB,故不選D.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(10),B(2,-3),C(4,-2).

(1)在圖中作出△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1.

(2)作出△A1B1C1向左平移4個(gè)單位長(zhǎng)度后得到的△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo)_____.

(3)A2B2C2的面積是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)上,,于點(diǎn),交于點(diǎn),則的長(zhǎng)是(

A.1.5B.1.8C.2D.2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級(jí)數(shù)學(xué)興趣小組對(duì)三角形內(nèi)角或外角平分線的夾角與第三個(gè)內(nèi)角的數(shù)量關(guān)系進(jìn)行了探究.

1)如圖1,在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P,∠A64°,則∠BPC   

2)如圖2,△ABC的內(nèi)角∠ACB的平分線與△ABC的外角∠ABD的平分線交于點(diǎn)E.其中∠Aα,求∠BEC.(用α表示∠BEC);

3)如圖3,∠CBM、∠BCN為△ABC的外角,∠CBM、∠BCN的平分線交于點(diǎn)Q,請(qǐng)你寫出∠BQC與∠A的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點(diǎn)B,

點(diǎn)C在x軸正半軸上,且OC=2AB,點(diǎn)E在線段AC上,且AE=3EC,點(diǎn)D為OB的中點(diǎn),若ADE

的面積為3,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,是中線,過點(diǎn)作的平行線交的延長(zhǎng)線于點(diǎn)

1)求證:為等腰三角形;

2)延長(zhǎng)至點(diǎn),使,連接,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方體ABCD-A'B'C'D'是個(gè)無上底長(zhǎng)方體容器,長(zhǎng)AB5cm,寬BC3cm,高AA8cm,甜食點(diǎn)M在容器內(nèi)側(cè),位于側(cè)棱BB的中點(diǎn),一只螞蟻從容器外部的A爬到點(diǎn)M處吃甜食,這只螞蟻爬行的最短路徑是( cm

A.B.13C.D.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠B=90°A

(1)如圖1,求證:AB=AC;

(2)如圖2,若∠BAC=90°,點(diǎn)DAB上一點(diǎn),過點(diǎn)B作直線CD的垂線,垂足為E,連接AE, 求∠AEC的度數(shù);

(3)如圖3,在(2)的條件下,過點(diǎn)AAE的垂線交CE于點(diǎn)F,連接BF,若∠ABF-EAB=15°,GDF上一點(diǎn),連接AG,若∠AGD=EBFAG=6,CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC 是等邊三角形,點(diǎn) P 在△ABC 內(nèi),PA=2,將△PAB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到△P1AC,則 P1P 的長(zhǎng)等于( )

A. 2 B. C. D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案