<ins id="wrsly"><small id="wrsly"></small></ins>
  • (2010•株洲)如圖,直角△ABC中,∠C=90°,,,點(diǎn)P為邊BC上一動(dòng)點(diǎn),PD∥AB,PD交AC于點(diǎn)D,連接AP.
    (1)求AC、BC的長(zhǎng);
    (2)設(shè)PC的長(zhǎng)為x,△ADP的面積為y.當(dāng)x為何值時(shí),y最大,并求出最大值.

    【答案】分析:(1)在Rt△ABC中,根據(jù)∠B的正弦值及斜邊AB的長(zhǎng),可求出AC的長(zhǎng),進(jìn)而可由勾股定理求得BC的長(zhǎng);
    (2)由于PD∥AB,易證得△CPD∽△CBA,根據(jù)相似三角形得出的成比例線段,可求出CD的表達(dá)式,也就求出AD的表達(dá)式,進(jìn)而可以AD為底、PC為高得出△ADP的面積,即可求出關(guān)于y、x的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì),可求出y的最大值及對(duì)應(yīng)的x的值.
    解答:解:(1)在Rt△ABC中,,
    ,
    ∴AC=2,根據(jù)勾股定理得:BC=4;(3分)

    (2)∵PD∥AB,∴△ABC∽△DPC,∴;
    設(shè)PC=x,則,

    ∴當(dāng)x=2時(shí),y的最大值是1. (8分)
    點(diǎn)評(píng):此題主要考查了解直角三角形、相似三角形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識(shí).
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(02)(解析版) 題型:選擇題

    (2010•株洲)如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn).已知A、B是兩格點(diǎn),如果C也是圖中的格點(diǎn),且使得△ABC為等腰三角形,則點(diǎn)C的個(gè)數(shù)是( )

    A.6
    B.7
    C.8
    D.9

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

    (2010•株洲)如圖,直角△ABC中,∠C=90°,,,點(diǎn)P為邊BC上一動(dòng)點(diǎn),PD∥AB,PD交AC于點(diǎn)D,連接AP.
    (1)求AC、BC的長(zhǎng);
    (2)設(shè)PC的長(zhǎng)為x,△ADP的面積為y.當(dāng)x為何值時(shí),y最大,并求出最大值.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2010年湖南省株洲市中考數(shù)學(xué)試卷(解析版) 題型:解答題

    (2010•株洲)如圖,AB是⊙O的直徑,C為圓周上一點(diǎn),∠ABC=30°,⊙O過點(diǎn)B的切線與CO的延長(zhǎng)線交于點(diǎn)D.
    求證:(1)∠CAB=∠BOD;
    (2)△ABC≌△ODB.

    查看答案和解析>>

    科目:初中數(shù)學(xué) 來(lái)源:2010年湖南省株洲市中考數(shù)學(xué)試卷(解析版) 題型:填空題

    (2010•株洲)如圖,四邊形ABCD是菱形,對(duì)角線AC和BD相交于點(diǎn)O,AC=4cm,BD=8cm,則這個(gè)菱形的面積是    cm2

    查看答案和解析>>

    同步練習(xí)冊(cè)答案