【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關系如圖所示.

(1)當30x60時,求y與x的函數(shù)關系式;

(2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關系式;

(3)銷售價格應定為多少元時,獲得利潤最大,最大利潤是多少?

【答案】(1)y=﹣0.1x+8(30x60)(2)w=(3)當銷售價格定為50元/件或80元/件,獲得利潤最大,最大利潤是40萬元

【解析】

試題分析:(1)由圖象知,當30x60時,圖象過(60,2)和(30,5),運用待定系數(shù)法求解析式即可;

(2)根據(jù)銷售產(chǎn)品的純利潤=銷售量×單個利潤,分30x60和60x80列函數(shù)表達式;

(3)當30x60時,運用二次函數(shù)性質(zhì)解決,當60x80時,運用反比例函數(shù)性質(zhì)解答.

試題解析:(1)當x=60時,y==2,

當30x60時,圖象過(60,2)和(30,5),

設y=kx+b,則

,

解得:

y=﹣0.1x+8(30x60);

(2)根據(jù)題意,當30x60時,W=(x﹣20)y﹣50=(x﹣20)(﹣0.1x+8)﹣50=﹣0.1x2+10x﹣210,

當60x80時,W=(x﹣20)y﹣50=(x﹣20)·﹣50=﹣+70,

綜上所述:W=;

(3)當30x60時,W=﹣0.1x2+10x﹣210=﹣0.1(x﹣50)2+40,

當x=50時,W最大=40(萬元);

當60x80時,W=﹣+70,

﹣24000,W隨x的增大而增大,

當x=80時,W最大=﹣+70=40(萬元),

答:當銷售價格定為50元/件或80元/件,獲得利潤最大,最大利潤是40萬元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題原型:如圖,在銳角△ABC中,∠ABC=45°,AD⊥BC于點D,在AD上取點E,使DE=CD,連結(jié)BE.求證:BE=AC.

問題拓展:如圖,在問題原型的條件下,F(xiàn)為BC的中點,連結(jié)EF并延長至點M,使FM=EF,連結(jié)CM.

(1)判斷線段AC與CM的大小關系,并說明理由.

(2)若AC=,直接寫出A、M兩點之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=x與反比例函數(shù)y=(x0)的圖象交于點A(2,m);將直線y=x向下平移后與反比例函數(shù)y=(x0)的圖象交于點B,且△AOB的面積為3.

(1)求k的值;

(2)求平移后所得直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸、y軸分別交于A、B兩點,與反比例函數(shù)的圖象分別交于C、D兩點,點D(2,﹣3),點B是線段AD的中點.

(1)求一次函數(shù)y1=k1x+b與反比例函數(shù)的解析式;

(2)求COD的面積;

(3)直接寫出y1y2時自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高鐵給我們的出行帶來了極大的方便.如圖,和諧號高鐵列車座椅后面的小桌板收起時,小桌板的支架的底端N與桌面頂端M的距離MN=75cm,且可以看作與地面垂直.展開小桌板使桌面保持水平,AB⊥MN,∠MAB=∠MNB=37°,且支架長BN與桌面寬AB的長度之和等于MN的長度.求小桌板桌面的寬度AB(結(jié)果精確到1cm,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的說理過程:如圖,在四邊形中,,分別是,延長線上的點,連接,分別交,于點,.已知,.說明理由.

理由:(已知),

(______),

(等量代換).

(______).

(______).

(______),

(______).

(______).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校的大學生自愿者參與服務工作,計劃組織全校自愿者統(tǒng)一乘車去某地.若單獨調(diào)配座客車若干輛,則空出個座位,若只調(diào)配座客車若干輛,則用車數(shù)量將增加,并有人沒有座位.

(1)計劃調(diào)配座客車多少輛?該大學共有多少名自愿者?(列方程組解答)

(2)若同時調(diào)配座和座兩種車型,既保證每人有座,又保證每車不空座,則兩種車型各需多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAC的平分線交AABC的外接圓于點D,交BC于點F,ABC的平分線交AD于點E.

(1)求證:DE=DB.

(2)若∠BAC=90°,BD=4,求ABC外接圓的半徑;

(3)若BD=6,DF=4,求AD的長

查看答案和解析>>

同步練習冊答案