已知:當(dāng)X=2時,二次三項(xiàng)式x2-2mx+4的值等于-4.當(dāng)x為何值時,這個二次三項(xiàng)式的值是-1?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
1.求點(diǎn)A的坐標(biāo);
2.當(dāng)∠ABC=45°時,求m的值;
3.已知一次函數(shù)y=kx+b,點(diǎn)P(n,0)是x軸上的一個動點(diǎn),在(2)的條件下,過點(diǎn)P垂直于x軸的直線交這個一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象于點(diǎn)N.若只有當(dāng)-2<n<2時,點(diǎn)M位于點(diǎn)N的上方,求這個一次函數(shù)的解析式.(友情提示:自畫圖形)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖10,已知直線()交x軸、y軸于A、B兩點(diǎn),點(diǎn)C、M分別在線段OA、AB上,且OC=2CA,AM=2MB,連接MC,將△ACM繞點(diǎn)M旋轉(zhuǎn)180°,得到△FEM,顯然點(diǎn)E在y軸上, 點(diǎn)F在直線l上;取線段EO中點(diǎn)N,將△ACM沿MN所在直線翻折,得到△PMG,其中P與A為對稱點(diǎn).記:過點(diǎn)F的反比例函數(shù)圖象為,過點(diǎn)M且以B為頂點(diǎn)的二次函數(shù)圖象為,過點(diǎn)P且以M為頂點(diǎn)的二次函數(shù)圖象為.
(1)當(dāng)m=6時,①直接寫出點(diǎn)M、F的坐標(biāo),
②求、的函數(shù)解析式;
(2)當(dāng)m發(fā)生變化時,
①在的每一支上,y隨x的增大如何變化?請說明理由.
②若、中的y都隨著x的增大而減小,寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆湖南省臨武縣楚江中學(xué)九年級二次函數(shù)測試數(shù)學(xué)試卷(帶解析) 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C
【小題1】求點(diǎn)A的坐標(biāo)
【小題2】當(dāng)∠ABC=45°時,求m的值
【小題3】已知一次函數(shù)y=kx+b,點(diǎn)P(n,0)是x軸上的一個動點(diǎn).在(2)的條件下,過點(diǎn)P垂直于x軸的直線交這個一次函數(shù)的圖象于點(diǎn)M,交二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象于點(diǎn)N.若只有當(dāng)-2<n<2時,點(diǎn)M位于點(diǎn)N的上方,求這個一次函數(shù)的解析式
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com