【題目】如圖,直線y1=-x-2x軸于點A,交y軸于點B,拋物線y2=ax2+bx+c的頂點為A,且經(jīng)過點B.

1)求該拋物線的解析式;

2)求當(dāng)y1≥y2x的值.

【答案】(1)y2=-x2-2x-2(2)x≤-2或x≥0.

【解析】1由于點A是拋物線的頂點,可將拋物線的解析式設(shè)為頂點式,然后將B點坐標代入即可求出二次函數(shù)的解析式;

2)結(jié)合A、B的坐標以及兩個函數(shù)的圖象,即可判斷出y1y2x的取值范圍.

解:1∵直線y1=-x-2x軸于點A,交y軸于點B

∴點A的坐標為(-2,0),點B的坐標為(0-2.

∵拋物線y2=ax2+bx+c的頂點為A,

∴設(shè)拋物線為y2=ax+22

∵拋物線過點B0,-2,

-2=4a,a=-.

y2=-x+22=-x2-2x-2.

2當(dāng)y1y2時,x的取值范圍是x≤-2x≥0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1所示,等腰直角三角形ABC中,∠BAC=90O,AB=AC,直線MN經(jīng)過點A,BDMN于點D,CEMN于點E.

(1)試判斷線段DE、BDCE之間的數(shù)量關(guān)系,并說明理由;

(2)當(dāng)直線MN運動到如圖2所示位置時,其余條件不變,判斷線段DE、BD、CE之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,ADBC邊上的中線.

(1)畫出與△ACD關(guān)于點D成中心對稱的三角形;

(2)找出與AC相等的線段;

(3)探究:△ABCABAC的和與中線AD之間有何大小關(guān)系?并說明理由;

(4)AB=5,AC=3,求線段AD的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,六邊形ABCDEF,AFCD,ABDE,∠A=140°,∠B=100°,∠E=90°,:∠C、∠D、∠F的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ACB=90CDABD

(1)寫出圖中相似的三角形;

(2)求證: = AD·BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠MAN=120°,點C是∠MAN的平分線AQ上的一個定點,點B,D分別在AN,AM上,連接BD

【發(fā)現(xiàn)】

1)如圖1,若∠ABC=ADC=90°,則∠BCD=   °,CBD   三角形;

【探索】

2)如圖2,若∠ABC+ADC=180°,請判斷CBD的形狀,并證明你的結(jié)論;

【應(yīng)用】

3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點G,H分別在射線OE,OF上,且PGH為等邊三角形,則滿足上述條件的PGH的個數(shù)一共有   .(只填序號)

2344個以上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖將長方形OABC置于平面直角坐標系中,A的坐標為(04),C的坐標為(m,0)(m>0),D(m,1)BC將長方形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應(yīng)點為點E.

1當(dāng)m=3,B的坐標為_________,E的坐標為_________;

2隨著m的變化,試探索:E能否恰好落在x軸上?若能請求出m的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,某校積極開展拓展性課程建設(shè),設(shè)計開設(shè)藝術(shù)、體育、勞技、文學(xué)等多個類別的拓展性課程,要求每一位學(xué)生都自主選擇一個類別的拓展性課程。為了了解學(xué)生選擇拓展性課程的情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖(部分信息未給出):

根據(jù)統(tǒng)計圖中的信息,解答下列問題:

(1)求本次被調(diào)查的學(xué)生人數(shù);

(2)將條形圖補充完整;

(3)若該校共有1600名學(xué)生,請估計全校選擇體育類的學(xué)生人數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字1,-2,3,-4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.

(1)共有   種可能的結(jié)果.

(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案