某服裝經(jīng)營部每天的固定費用為300元,現(xiàn)試銷一種成本為每件80元的服裝.規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于35%.經(jīng)試銷發(fā)現(xiàn),每件銷售單價相對成本提高x(元)(x為整數(shù))與日均銷售量y(件)之間的關(guān)系符合一次函數(shù)y=kx+b,且當(dāng)x=10時,y=100;x=20時,y=80.
(1)求一次函數(shù)y=kx+b的關(guān)系式;
(2)設(shè)該服裝經(jīng)營部日均獲得毛利潤為W元(毛利潤=銷售收入-成本-固定費用),求W關(guān)于x的函數(shù)關(guān)系式;并求當(dāng)銷售單價定為多少元時,日均毛利潤最大,最大日均毛利潤是多少元?

(1);(2)W=-2x2+120x-300,當(dāng)銷售單價定為108元時,日均毛利潤最大,為1492元.

解析試題分析:(1)應(yīng)用待定系數(shù)法可求一次函數(shù)y=kx+b的關(guān)系式;
(2)根據(jù)毛利潤=銷售收入-成本-固定費用列式求出W關(guān)于x的函數(shù)關(guān)系式;應(yīng)用二次函數(shù)的性質(zhì)求出最值.
試題解析:(1)根據(jù)題意得:,解得:,
∴所求一次函數(shù)的關(guān)系式為.
(2)W=(-2x+120)x-300,即W=-2x2+120x-300
W=-2x2+120x-300=-2(x-30)2+1500,
∵80×35%=28,∴0≤x≤28 .
∴當(dāng)x<30時,W隨x的增大而增大.
∴當(dāng)x=28時,W最大=-2(28-30)2+1500=1492,此時銷售單價為80+28=108(元).
∴當(dāng)銷售單價定為108元時,日均毛利潤最大,為1492元.
考點:一、二次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某工廠生產(chǎn)一種合金薄板(其厚度忽略不計)這些薄板的形狀均為正方形,邊長(單位:cm)在5~50之間,每張薄板的成本價(單位:元)與它的面積(單位:cm2)成正比例,每張薄板的出廠價(單位:元)由基礎(chǔ)價和浮動價兩部分組成,其中基礎(chǔ)價與薄板的大小無關(guān),是固定不變的,浮動價與薄板的邊長成正比例,在營銷過程中得到了表格中的數(shù)據(jù),

薄板的邊長(cm)
 
20
 
30
 
出廠價(元/張)
 
50
 
70
 
⑴求一張薄板的出廠價與邊長之間滿足的函數(shù)關(guān)系式;
⑵已知出廠一張邊長為40cm的薄板,獲得利潤是26元(利潤=出廠價-成本價).
①求一張薄板的利潤與邊長這之間滿足的函數(shù)關(guān)系式.
②當(dāng)邊長為多少時,出廠一張薄板獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

小趙投資銷售一種進(jìn)價為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),當(dāng)月內(nèi)銷售單價不變,則月銷售量y(件)與銷售單價x(元)之間的關(guān)系可近似的看作一次函數(shù):
(1)設(shè)小趙每月獲得利潤為w(元),當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?并求出最大利潤.
(2)如果小趙想要每月獲得的利潤不低于2000元,那么如何制定銷售單價才可以實現(xiàn)這一目標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象過A(-1,-2)、B(1,0)兩點.

(1)求此二次函數(shù)的解析式并畫出二次函數(shù)圖象;
(2)點P(t,0)是x軸上的一個動點,過點P作x軸的垂線交直線AB于點M,交二次函數(shù)的圖象于點N.當(dāng)點M位于點N的上方時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線與坐標(biāo)軸交于三點,點的橫坐標(biāo)為,過點的直線軸交于點,點是線段上的一個動點,于點.若,且

(1)求的值
(2)求出點的坐標(biāo)(其中用含的式子表示):
(3)依點的變化,是否存在的值,使為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,等邊△ABC的邊長為4,E是邊BC上的動點,EH⊥AC于H,過E作EF∥AC,交線段AB于點F,在線段AC上取點P,使PE=EB.設(shè)EC=x(0<x≤2).

(1)請直接寫出圖中與線段EF相等的兩條線段(不再另外添加輔助線);
(2)Q是線段AC上的動點,當(dāng)四邊形EFPQ是平行四邊形時,求平行四邊形EFPQ的面積(用含的代數(shù)式表示);
(3)當(dāng)(2)中 的平行四邊形EFPQ面積最大值時,以E為圓心,r為半徑作圓,根據(jù)⊙E與此時平行四邊形EFPQ四條邊交點的總個數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某超市準(zhǔn)備進(jìn)一批每個進(jìn)價為40元的小家電,經(jīng)市場調(diào)查預(yù)測,售價定為50元時可售出400個;定價每增加1元,銷售量將減少10個.
(1)設(shè)每個定價增加元,此時的銷售量是多少?(用含的代數(shù)式表示)
(2)超市若準(zhǔn)備獲得利潤6000元,并且使進(jìn)貨量較少,則每個應(yīng)定價為多少元?
(3)超市若要獲得最大利潤,則每個應(yīng)定價多少元?獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點A、B,與y軸的正半軸交于點C,點A的坐標(biāo)為(1,0),OB=OC.

(1)求此拋物線的解析式;
(2)若點P是線段BC上的一個動點,過點P作y軸的平行線與拋物線在x軸下方交于點Q,試問線段PQ的長度是否存在最大值?若存在,求出其最大值;若不存在,請說明理由;
(3)若此拋物線的對稱軸上的點M滿足∠AMC=45°,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)的圖象與一次函數(shù)的圖象交于,兩點. C為二次函數(shù)圖象的頂點.

(1)求二次函數(shù)的解析式;
(2)定義函數(shù)f:“當(dāng)自變量x任取一值時,x對應(yīng)的函數(shù)值分別為y1或y2,若y1≠y2,函數(shù)f的函數(shù)值等于y1、y2中的較小值;若y1=y2,函數(shù)f的函數(shù)值等于y1(或y2).” 當(dāng)直線(k >0)與函數(shù)f的圖象只有兩個交點時,求的值.

查看答案和解析>>

同步練習(xí)冊答案