(本題滿分12分)
已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

【小題1】(1)填空:菱形ABCD的邊長(zhǎng)是    、面積是  、 高BE的長(zhǎng)是   ;
【小題2】(2)探究下列問題:
若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上時(shí)
② △APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;
【小題3】(3)在運(yùn)動(dòng)過程中是否存在某一時(shí)刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說明理由.



【小題1】(1)5 、 24 、………………………3分
【小題2】(2) 過Q點(diǎn)作QH⊥AD于H
證△AHQ∽AEB得HQ=-t
S=
= …………………6分
當(dāng)t=時(shí),S最大=6…………7分

 
【小題3】(3)存在.………………8分
若AP=AQ
則t=10-2t
t=
若PQ=AQ
過Q點(diǎn)作QH⊥AD于H
可證△AHQ∽AEB得AH=-t
AP=t
根據(jù)等腰三角形三線合一得AH=PH
∴AP=2AH

t=
若AP=PQ
方法同PQ=AQ得t=………………11分
∵點(diǎn)Q在線段BA上,則
∴t= 、都符合題意……………12分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分12分)

已知:AB是⊙O的直徑,弦CDAB于點(diǎn)G,E是直線AB上一動(dòng)點(diǎn)(不與點(diǎn)A、B、G重合),直線DE交⊙O于點(diǎn)F,直線CF交直線AB于點(diǎn)P.設(shè)⊙O的半徑為r.

(1)如圖1,當(dāng)點(diǎn)E在直徑AB上時(shí),試證明:OE·OPr2

(2)當(dāng)點(diǎn)EAB(或BA)的延長(zhǎng)線上時(shí),以如圖2點(diǎn)E的位置為例,請(qǐng)你畫出符合題意的圖形,標(biāo)注上字母,(1)中的結(jié)論是否成立?請(qǐng)說明理由.

 

 

 

 

 

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年濱海新區(qū)大港初中畢業(yè)生學(xué)業(yè)考試第一次模擬試卷數(shù)學(xué) 題型:解答題

(本題滿分12分)已進(jìn)入汛期,7年級(jí)1班的同學(xué)到水庫調(diào)查了解汛情。水庫一
共有10個(gè)泄洪閘,現(xiàn)在水庫水位已超過安全線,上游的河水仍以一個(gè)不變的速度流入水庫。
同學(xué)們經(jīng)過一天的觀察和測(cè)量,做了如下記錄:上午打開一個(gè)泄洪閘,在2小時(shí)內(nèi)水位繼續(xù)
上漲了0.06米;下午再打開2個(gè)泄洪閘后,4小時(shí)內(nèi)水位下降了0.1米。目前水位仍超過安
全線1.2米。
(1)如果打開5個(gè)泄洪閘,還需幾個(gè)小時(shí)水位降到安全線?
(2)如果防汛指揮部要求在6小時(shí)內(nèi)使水位降到安全線,應(yīng)該再打開幾個(gè)泄洪閘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市)九年級(jí)第二次聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

已知:如圖,為平行四邊形ABCD的對(duì)角線,的中點(diǎn),于點(diǎn),與,分別交于點(diǎn)

求證:⑴

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省蘇州市九年級(jí)10月月考數(shù)學(xué)卷 題型:解答題

(本題滿分12分)已知,AB為⊙O 的直徑,點(diǎn)E 為弧AB 任意一點(diǎn),如圖,AC平分∠BAE,交⊙O于C ,過點(diǎn)C作CD⊥AE于D,與AB的延長(zhǎng)線交于P.

⑴ 求證:PC是⊙O的切線.⑵ 若∠BAE=60°,求線段PB與AB的數(shù)量關(guān)系.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年江蘇省揚(yáng)州市九年級(jí)第一學(xué)期期末考試數(shù)學(xué)卷 題型:解答題

(本題滿分12分)

已知直角坐標(biāo)系中菱形ABCD的位置如圖,C,D兩點(diǎn)的坐標(biāo)分別為(4,0),(0,3).現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),點(diǎn)P沿線段AD向終點(diǎn)D運(yùn)動(dòng),點(diǎn)Q沿折線CBA向終點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

 

 

 

 

 

 

 

 

1.(1)填空:菱形ABCD的邊長(zhǎng)是      、面積是    、  高BE的長(zhǎng)是     ;

2.(2)探究下列問題:

若點(diǎn)P的速度為每秒1個(gè)單位,點(diǎn)Q的速度為每秒2個(gè)單位.當(dāng)點(diǎn)Q在線段BA上時(shí)

②  △APQ的面積S關(guān)于t的函數(shù)關(guān)系式,以及S的最大值;

3.(3)在運(yùn)動(dòng)過程中是否存在某一時(shí)刻使得△APQ為等腰三角形,若存在求出t的值;若不存在說明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案