【題目】如圖,在ABC中,AB6cm,AC8cm,BC10cm,P為邊BC上一動(dòng)點(diǎn),PEABE,PFACF,連接EF,則EF的最小值為_______cm

【答案】4.8;

【解析】

連接AP,先利用勾股定理的逆定理證明△ABC為直角三角形,∠BAC=90°,再證明四邊形AEPF為矩形,則AP=EF,當(dāng)AP的值最小時(shí),EF的值最小,利用垂線段最短得到AP⊥BC時(shí),AP的值最小,然后利用面積法計(jì)算此時(shí)AP的長(zhǎng)即可.

解:

連接AP,
∵AB=6cm,AC=8cmBC=10cm,
∴AB2+AC2=BC2
∴△ABC是直角三角形,
∴∠BAC=90°,
∵PE⊥AB,PF⊥AC
四邊形AEPF是矩形,
∴AP=EF,
當(dāng)AP⊥BC時(shí),EF的值最小,
SABCAB×ACBC×AP

則:×6×8×10×AP
解得AP=4.8cm
EF的最小值是4.8cm

答案為4.8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中裝有大小和形狀相同的3個(gè)紅球和2個(gè)白球,把它們充分?jǐn)噭颍?/span>

(1)“從中任意抽取1個(gè)球不是紅球就是白球   事件,從中任意抽取1個(gè)球是黑球   事件;

(2)從中任意抽取1個(gè)球恰好是紅球的概率是   ;

(3)學(xué)校決定在甲、乙兩名同學(xué)中選取一名作為學(xué)生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個(gè)球,若兩球同色,則選甲;若兩球異色,則選乙.你認(rèn)為這個(gè)規(guī)則公平嗎?請(qǐng)用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,已知A–1,0),且直線BC的解析式為y=x-2,作垂直于x軸的直線,與拋物線交于點(diǎn)F,與線段BC交于點(diǎn)E(不與點(diǎn)B和點(diǎn)C重合).

1)求拋物線的解析式;

2)若CEF是以CE為腰的等腰三角形,求m的值;

3)點(diǎn)Py軸左側(cè)拋物線上的一點(diǎn),過(guò)點(diǎn)P交直線BC于點(diǎn)M,連接PB,若以P、M、B為頂點(diǎn)的三角形與△ABC相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線x軸交于點(diǎn)y軸交于點(diǎn)C,拋物線經(jīng)過(guò)點(diǎn)B,C,與x軸的另一個(gè)交點(diǎn)為A

1)求拋物線的解析式;

2)點(diǎn)P是直線下方拋物線上一動(dòng)點(diǎn),求四邊形面積最大時(shí)點(diǎn)P的坐標(biāo);

3)若M是拋物線上一點(diǎn),且,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)垃圾分類處理,改善生態(tài)環(huán)境的號(hào)召,某小區(qū)將生活垃圾分成四類:廚余垃圾、可回收垃圾、不可回收垃圾、有害垃圾,分別記為ab、c、并且設(shè)置了相應(yīng)的垃圾箱:“廚余垃圾”箱,“可回收垃圾”箱,“不可回收垃圾”箱,“有害垃圾”箱,分別記為A,BC,D

如果將一袋有害垃圾任意投放進(jìn)垃圾箱,則投放正確的概率是________

小明將家里的廚余垃圾、可回收垃圾分裝在兩個(gè)袋中,任意投放在其中兩個(gè)垃圾箱中,用畫(huà)樹(shù)狀圖或列表的方法求這兩袋垃圾都投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】積極響應(yīng)政府提出的“綠色發(fā)展·碳出行”號(hào)召,某社區(qū)決定購(gòu)置一批共享單車(chē),經(jīng)市場(chǎng)調(diào)查知,購(gòu)買(mǎi)3量男式單車(chē)與4輛女式單車(chē)費(fèi)用相同,購(gòu)買(mǎi)5輛男式單車(chē)與4輛女式單車(chē)共需16000元.

(1)求男式單車(chē)和女式單車(chē)的單價(jià);

(2)該社區(qū)要求男式單比女式單車(chē)多4輛,兩種單車(chē)至少需要22輛,購(gòu)置兩種單車(chē)的費(fèi)用不超過(guò)50000元,該社區(qū)有幾種購(gòu)置方案?怎樣購(gòu)置才能使所需總費(fèi)用最低,最低費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,l是經(jīng)過(guò)A2,0),B0b)兩點(diǎn)的直線,且b0,點(diǎn)C的坐標(biāo)為(2,0),當(dāng)點(diǎn)B移動(dòng)時(shí),過(guò)點(diǎn)CCDl交于點(diǎn)D

1)求點(diǎn)D,O之間的距離;

2)當(dāng)tanCDO=時(shí),求直線l的解析式;

3)在(2)的條件下,直接寫(xiě)出△ACD與△AOB重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)拋物線yax2+bx+cx軸交于兩個(gè)不同的點(diǎn)A(﹣10),Bm,0),與y軸交于點(diǎn)C0,﹣2),且∠ACB90度.

1)求m的值和拋物線的解析式;

2)已知點(diǎn)D1n)在拋物線上,過(guò)點(diǎn)A的直線yx+1交拋物線于另一點(diǎn)E,求點(diǎn)D和點(diǎn)E的坐標(biāo);

3)在x軸上是否存在點(diǎn)P,使以點(diǎn)P,B,D為頂點(diǎn)的三角形與三角形AEB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某路燈在鉛垂面內(nèi)的示意圖,燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長(zhǎng)為13.3米,從D、E兩處測(cè)得路燈A的仰角分別為α45°,且tanα6.求燈桿AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案