【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
【答案】
(1)解:∵OE=2,CE⊥x軸于點(diǎn)E.
∴C的橫坐標(biāo)為﹣2,
把x=﹣2代入y=﹣ x+2得,y=﹣ ×(﹣2)+2=3,
∴點(diǎn)C的坐標(biāo)為C(﹣2,3).
設(shè)反比例函數(shù)的解析式為y= ,(m≠0)
將點(diǎn)C的坐標(biāo)代入,得3= .
∴m=﹣6.
∴該反比例函數(shù)的解析式為y=﹣
(2)解:由直線線y=﹣ x+2可知B(4,0),
解 得 , ,
∴D(6,﹣1),
∴S△OBD= ×4×1=2
【解析】(1)根據(jù)已知條件求出C點(diǎn)坐標(biāo),用待定系數(shù)法求出反比例的函數(shù)解析式;(2)根據(jù)直線的解析式求得B的坐標(biāo),然后根據(jù)一次函數(shù)和反比例函數(shù)的解析式求得D的坐標(biāo),進(jìn)而根據(jù)三角形的面積公式求得即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,分別把兩個(gè)邊長為的小正方形沿一條對角線裁成個(gè)小三角形拼成一個(gè)大正方形,則大正方形的邊長為_______;
(2)若一個(gè)圓的面積與一個(gè)正方形的面積都是,設(shè)圓的周長為,正方形的周長為,則_____(填“”或“”或“”號);
(3)如圖,若正方形的面積為,李明同學(xué)想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為,他能裁出嗎?請說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖1,直線l與坐標(biāo)軸的正半軸分別交于A,B兩點(diǎn),與反比例函數(shù)y= (k>0,x>0)的圖象交于C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),過點(diǎn)C作CE⊥y軸于點(diǎn)E,過點(diǎn)D作DF⊥x軸于點(diǎn)F,CE與DF交于點(diǎn)G(a,b).
(1)若 ,請用含n的代數(shù)式表示 ;
(2)求證:AC=BD;
應(yīng)用:如圖2,直線l與坐標(biāo)軸的正半軸分別交于點(diǎn)A,B兩點(diǎn),與反比例函數(shù)y= (k>0,x>0)的圖象交于點(diǎn)C,D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左邊),已知 ,△OBD的面積為1,試用含m的代數(shù)式表示k.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售甲、乙兩種品牌的智能手機(jī),這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4000 | 2500 |
售價(jià)(元/部) | 4300 | 3000 |
該商場計(jì)劃購進(jìn)兩種手機(jī)若干部,共需15.5萬元,預(yù)計(jì)全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價(jià)﹣進(jìn)價(jià))×銷售量)
(1)該商場計(jì)劃購進(jìn)甲、乙兩種手機(jī)各多少部?
(2)通過市場調(diào)研,該商場決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購進(jìn)數(shù)量,增加乙種手機(jī)的購進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的2倍,而且用于購進(jìn)這兩種手機(jī)的總資金不超過16萬元,該商場怎樣進(jìn)貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC= ,DE=3.
求:
(1)⊙O的半徑;
(2)弦AC的長;
(3)陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當(dāng)a=﹣ 時(shí),①求h的值;②通過計(jì)算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直尺和圓規(guī)作一個(gè)角等于已知角,如圖,能得出的依據(jù)是( 。
A. SAS B. SSS C. AAS D. ASA
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,且AD>BC,BC=6 cm,動(dòng)點(diǎn)P,Q分別從A,C同時(shí)出發(fā),P以1 cm/s的速度由A向D運(yùn)動(dòng),Q以2cm/s的速度由C向B運(yùn)動(dòng)(Q運(yùn)動(dòng)到B時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)),則________后四邊形ABQP為平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個(gè)三角形,則S△ABO︰S△BCO︰S△CAO等于( )
A. 1︰1︰1
B. 1︰2︰3
C. 2︰3︰4
D. 3︰4︰5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com