【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉臂,使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉作出圓.已知OA=OB=10cm

(1)當∠AOB=18°時,求所作圓的半徑;(結果精確到0.01cm)

(2)保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度.(結果精確到0.01cm)

(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器)

【答案】(1)3.13cm;(2)0.98cm.

【解析】

試題分析:(1)根據(jù)題意作輔助線OC⊥AB于點C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;

(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.

試題解析:(1)作OC⊥AB于點C,如右圖2所示,由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°∴AB=2BC=2OBsin9°≈2×10×0.1564≈3.13cm,即所作圓的半徑約為3.13cm;

(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,∵保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,∴折斷的部分為BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2ABsin9°≈2×3.13×0.1564≈0.98cm,即鉛筆芯折斷部分的長度是0.98cm.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】化簡:[(a+2b)(a2b)(a+4b)2]÷(4b)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對單項式“5x”,我們可以這樣來解釋:某人以5千米/小時的速度走了x小時,他一共走的路程是5x千米,請你對“5x”再給出另一個生活實際方面的解釋_________________________________元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn

(1)求d的值;

(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個長方形的周長是30厘米,若長方形的一邊用字母x(厘米)表示,則該長方形的面積是( 。
A.x(30﹣2x)平方厘米
B.x(30﹣x)平方厘米
C.x(15﹣x)平方厘米
D.x(15+x)平方厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元一次不等式組包含三個條件:
(1)不等式組中所有的不等式都是不等式;
(2)不等式組中的所有一元一次不等式都含有;
(3)不等式組中的一元一次不等式的個數(shù)至少是個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系

小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD

簡單應用:

(1)在圖①中,若AC=,BC=,則CD=

(2)如圖③,AB是⊙O的直徑,點C、D在⊙上,,若AB=13,BC=12,求CD的長

拓展規(guī)律:

(3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)

(4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE=AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果平行四邊形的四個內角的平分線能夠圍成一個四邊形,那么這個四邊形一定是(  )

A. 平行四邊形 B. 矩形 C. 菱形 D. 正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品原價289元,經(jīng)連續(xù)兩次降價后售價為256元,設平均每降價的百分率為x,則下面所列方程正確的是( )

A. 2891﹣x2="256"B. 2561﹣x2=289

C. 2891﹣2x2="256"D. 2561﹣2x2=289

查看答案和解析>>

同步練習冊答案