作業(yè)寶如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連結(jié)AC,過點D作DE⊥AC,垂足為E.
(1)求證:DE為⊙O的切線;
(2)若∠BAC=60°,CE=3,則⊙O的半徑是多少?

(1)證明:如圖,連接OD,
∵AO=BO,BD=CD,
∴OD為△ACB的中位線,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,
∴DE是⊙O的切線;

(2)解:∵AB為⊙O的直徑,
∴∠ADB=90°,
∴AD⊥BC,
又∴BD=CD,
∴△ABC為等腰三角形,
∵∠BAC=60°,
∴△ABC為等邊三角形,
∴∠C=60°,AB=BC,
∴∠CDE=30°,
在Rt△CED中,
∵CE=3,∠CDE=30°,
∴CD=BD=6,
∴AB=12,
∴AO=6,即⊙O的半徑等于6.
分析:(1)證明:連接OD,由AO=BO,BD=CD得OD為△ACB的中位線,根據(jù)三角形中位線的性質(zhì)得OD∥AC,根據(jù)平行線的性質(zhì)由DE⊥AC得到DE⊥OD,于是根據(jù)切線的判定定理即可得到結(jié)論;
(2)由AB為⊙O的直徑得到∠ADB=90°,則可判斷△ABC為等腰三角形,而∠BAC=60°,所以△ABC為等邊三角形,所以∠C=60°,AB=BC,在Rt△CED中,利用含30度的直角三角形三邊的關(guān)系得到CD=BD=6,則AB=12,于是有AO=6.
點評:本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了圓周角定理、等邊三角形的判定與性質(zhì)以及含30度的直角三角形三邊的關(guān)系.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

小亮家窗戶上的遮雨罩是一種玻璃鋼制品,它的頂部是圓柱側(cè)面的一部分(如圖1),它的側(cè)面邊緣上有兩條圓�。ㄈ鐖D2),其中頂部圓弧AB的圓心O1在豎直邊緣AD上,另一條圓弧BC的圓心O2在水平邊緣DC的延長線上,其圓心角為90°,請你根據(jù)所標示的尺寸(單位:cm)解決下面的問題.(玻璃鋼材料的厚度忽略不計,π取3.1416)
(1)計算出弧AB所對的圓心角的度數(shù)(精確到0.01度)及弧AB的長度;(精確到0.1cm)
(2)計算出遮雨罩一個側(cè)面的面積;(精確到1cm2
(3)制做這個遮雨罩大約需要多少平方米的玻璃鋼材料.(精確到精英家教網(wǎng)0.1平方米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示是永州八景之一的愚溪橋,橋身橫跨愚溪,面臨瀟水,橋下冬暖夏涼,常有漁船停泊橋下避曬納涼.已知主橋拱為拋物線型,在正常水位下測得主拱寬24m,最高點離水面8m,以水平線AB為x軸,AB的中點為原點建立坐標系.
①求此橋拱線所在拋物線的解析式.
②橋邊有一浮在水面部分高4m,最寬處16m的河魚餐船,如果從安全方面考慮,要求通過愚溪橋的船只,其船身在鉛直方向上距橋內(nèi)壁的距離不少于0.5m.探索此船能否通過愚溪橋?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:初中數(shù)學解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長AD交EC的延長線于F,求證:AC·CD=AD·FC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,AB是鉛直地豎立在坡角為30°的山坡上的電線桿,當陽光與水平線成60°角時,電線桿的影子BC的長度為4米,則電線桿AB的高度為


  1. A.
    4米
  2. B.
    6米
  3. C.
    8米
  4. D.
    10米

查看答案和解析>>

同步練習冊答案