如圖,AD是△ABC的外接圓直徑,AD=,∠B=∠DAC,則AC的值為           

 

【答案】

  1

【解析】

試題分析:連接CD,由圓周角定理可知∠ACD=90°,再根據(jù)∠DAC=∠ABC可知AC=CD,由勾股定理即可得出AC的長.解:連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∵∠DAC=∠ABC,∠ABC=∠ADC,∴∠DAC=∠ADC,∴弧CD=弧AC∴AC=CD,又∵AC2+CD2=AD2,∴2AC2=AD2,∵AD=∴AC=1故答案為:1

考點:本題考查了圓周角定理;勾股定理

點評:此類試題屬于難度很大的試題,此類試題的解答需要考生對圓周角定理、勾股定理等基本性質(zhì)熟練把握

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案