【題目】甲、乙兩個工程隊同時參與一項工程建設(shè),共同施工15天完成該項工程的,乙隊另有任務(wù)調(diào)走,甲隊又單獨施工30天完成了剩余的工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若乙隊參與該項工程施工的時間不超過13天,則甲隊至少施工多少天才能完成該項工程?
【答案】(1)30天;(2)51天
【解析】
(1)兩隊需同時施工15天,利用甲隊單獨施工30天完成該項工程的,進(jìn)而利用總工作量為1得出等式求出答案;
(2)利用甲隊參與該項工程施工的時間不超過13天,得出不等式求出答案.
解:(1)因甲隊單獨施工30天完成該項工程的,所以甲隊單獨施工90天完成該項工程.
設(shè)乙隊單獨施工需要x天才能完成該項工程,則
.
解得x=30.
經(jīng)檢驗x=30是所列方程根.
(2)設(shè)甲隊施工y天完成該項工程,則.
解得y≥51.
所以y最小值=51.
答:(1)若乙隊單獨施工,需要30天才能完成該項工程;
(2)甲隊至少施工51天才能完成該項工程.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉(zhuǎn)90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.
問題出現(xiàn):(1)當(dāng)點P在線段AB上時,如圖1,線段AD,AP,DM之間的數(shù)量關(guān)系為 ;
題探究:(2)①當(dāng)點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數(shù)量關(guān)系為 ;
②當(dāng)點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數(shù)量關(guān)系并證明;
問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某居民小區(qū)要在一塊一邊靠墻(墻長)的空地上修建一個矩形花園,花園的一邊靠墻,另三邊用總長為的柵欄圍成.若設(shè)花園的寬為,花園的面積為.
求與之間的函數(shù)關(guān)系________,并寫出自變量的取值范圍是________;
根據(jù)中求得的函數(shù)關(guān)系式,描述其圖象的變化趨勢;并結(jié)合題意判斷當(dāng)取何值時,花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明從二次函數(shù)y=ax2+bx+c的圖像(如圖)中得出了下面的六條信息:①a<0;②c=0;③函數(shù)的最小值為-3;④二次函數(shù)y=ax2+bx+c的圖像與x軸交于點(0,0),(2.5,0);⑤當(dāng)0<x1<x2<2時,y1<y2;⑥對稱軸是直線x=2.你認(rèn)為其中正確的是________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線交AC于點D,交AB于點E,CD=2,則AC等于( )
A. 4 B. 5 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.
(1)若∠A=50°,求∠DBC的度數(shù).
(2)若AB=3,△CBD的周長為12,求△ABC得周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李大媽加盟了“紅紅”全國燒烤連鎖店,該公司的宗旨是“薄利多銷”,經(jīng)市場調(diào)查發(fā)現(xiàn),當(dāng)羊肉串的單價定為元時,每天能賣出串,在此基礎(chǔ)上,每加價元李大媽每天就會少賣出串,考慮了所有因素后李大媽的每串羊肉串的成本價為元,若李大媽每天銷售這種羊肉串想獲得利潤是元,那么請問這種羊肉串應(yīng)怎樣定價?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容:我們已經(jīng)學(xué)習(xí)了《二次根式》和《乘法公式》,聰明的你可以發(fā)現(xiàn):當(dāng),時,∵,∴,當(dāng)且僅當(dāng)時取等號.請利用上述結(jié)論解決以下問題:
(1)當(dāng)時,的最小值為_______;當(dāng)時,的最大值為__________.
(2)當(dāng)時,求的最小值.
(3)如圖,四邊形ABCD的對角線AC ,BD相交于點O,△AOB、△COD的面積分別為4和9,求四邊形ABCD面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com