【題目】如圖邊長(zhǎng)為5的正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A,C分別在x軸、y軸的正半軸上點(diǎn)EOA邊上的點(diǎn)(不與點(diǎn)A重合),EFCE,且與正方形外角平分線AG交于點(diǎn)P.

(1)求證:CE=EP.

(2)若點(diǎn)E的坐標(biāo)為(3,0),y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在說(shuō)明理由.

【答案】(1)證明見(jiàn)解析;(2)存在點(diǎn)M的坐標(biāo)為(0,2).

【解析】1)在OC上截取OK=OE.連接EK,求出∠KCE=CEA,根據(jù)ASA推出△CKE≌△EAP根據(jù)全等三角形的性質(zhì)得出即可;

2)過(guò)點(diǎn)BBMPEy軸于點(diǎn)M,根據(jù)ASA推出△BCM≌△COE,根據(jù)全等三角形的性質(zhì)得出BM=CE求出BM=EP.根據(jù)平行四邊形的判定得出四邊形BMEP是平行四邊形,即可求出答案.

1)在OC上截取OK=OE.連接EK,如圖1

OC=OACOA=BA0=90°,OEK=OKE=45°.

AP為正方形OCBA的外角平分線,∴∠BAP=45°,∴∠EKC=PAE=135°,CK=EA

ECEP∴∠CEF=COE=90°,

∴∠CEO+∠KCE=90°,CEO+∠PEA=90°,∴∠KCE=CEA

CKE和△EAP中,∵ ,

∴△CKE≌△EAP,EC=EP

2y軸上存在點(diǎn)M,使得四邊形BMEP是平行四邊形.

如圖,過(guò)點(diǎn)BBMPEy軸于點(diǎn)M,連接BP,EM如圖2,

則∠CQB=CEP=90°,所以∠OCE=CBQ

在△BCM和△COE中,∵,

∴△BCM≌△COEBM=CE

CE=EP,BM=EP

BMEP,∴四邊形BMEP是平行四邊形.

∵△BCM≌△COECM=OE=3,OM=COCM=2

故點(diǎn)M的坐標(biāo)為(0,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)EAH的中點(diǎn),點(diǎn)FGH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以四邊形ABCD的邊ABAD為邊分別向外側(cè)作等邊三角形ABFADE,連接EB、FD,交點(diǎn)為G

(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EBFD的數(shù)量關(guān)系是   ;

(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EBFD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;

(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過(guò)程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)?jiān)趫D3中求出∠EGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點(diǎn)H.

(1)如圖,①在圖中找出與∠DBA相等的角,并說(shuō)明理由;

②若∠BAC=100°,求∠DHE的度數(shù);

(2)若△ABC,∠A=50°,直接寫(xiě)出∠DHE的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,點(diǎn)P的邊OB上的一點(diǎn)

1過(guò)點(diǎn)P畫(huà)OB的垂線,交OA于點(diǎn)C;過(guò)點(diǎn)P畫(huà)OA的垂線,垂足為H;

2線段PH的長(zhǎng)度是點(diǎn)P到直線__________的距離

3線段__________的長(zhǎng)度是點(diǎn)C到直線OB的距離;

4線段PCPH、OC這三條線段大小關(guān)系是__________“<”號(hào)連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為12的正方形ABCD中,E是邊CD的中點(diǎn),將ADE沿AE對(duì)折至AFE,延長(zhǎng)EFBC于點(diǎn)G.BG的長(zhǎng)為( 。

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)單項(xiàng)式﹣2x3ym5xn+1y的差是一個(gè)單項(xiàng)式,求的值;

(2)化簡(jiǎn)求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.

(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù)   

(2)現(xiàn)有一只電子螞蟻PB點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).

(3)若當(dāng)電子螞蟻PB點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案