【題目】如圖,邊長(zhǎng)為5的正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn)處,點(diǎn)A,C分別在x軸、y軸的正半軸上,點(diǎn)E是OA邊上的點(diǎn)(不與點(diǎn)A重合),EF⊥CE,且與正方形外角平分線AG交于點(diǎn)P.
(1)求證:CE=EP.
(2)若點(diǎn)E的坐標(biāo)為(3,0),在y軸上是否存在點(diǎn)M,使得四邊形BMEP是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.
【答案】(1)證明見(jiàn)解析;(2)存在點(diǎn)M的坐標(biāo)為(0,2).
【解析】(1)在OC上截取OK=OE.連接EK,求出∠KCE=∠CEA,根據(jù)ASA推出△CKE≌△EAP,根據(jù)全等三角形的性質(zhì)得出即可;
(2)過(guò)點(diǎn)B作BM∥PE交y軸于點(diǎn)M,根據(jù)ASA推出△BCM≌△COE,根據(jù)全等三角形的性質(zhì)得出BM=CE,求出BM=EP.根據(jù)平行四邊形的判定得出四邊形BMEP是平行四邊形,即可求出答案.
(1)在OC上截取OK=OE.連接EK,如圖1.
∵OC=OA,∠COA=∠BA0=90°,∠OEK=∠OKE=45°.
∵AP為正方形OCBA的外角平分線,∴∠BAP=45°,∴∠EKC=∠PAE=135°,∴CK=EA.
∵EC⊥EP,∴∠CEF=∠COE=90°,
∴∠CEO+∠KCE=90°,∠CEO+∠PEA=90°,∴∠KCE=∠CEA.
在△CKE和△EAP中,∵ ,
∴△CKE≌△EAP,∴EC=EP;
(2)y軸上存在點(diǎn)M,使得四邊形BMEP是平行四邊形.
如圖,過(guò)點(diǎn)B作BM∥PE交y軸于點(diǎn)M,連接BP,EM,如圖2,
則∠CQB=∠CEP=90°,所以∠OCE=∠CBQ.
在△BCM和△COE中,∵,
∴△BCM≌△COE,∴BM=CE.
∵CE=EP,∴BM=EP.
∵BM∥EP,∴四邊形BMEP是平行四邊形.
∵△BCM≌△COE,∴CM=OE=3,∴OM=CO﹣CM=2.
故點(diǎn)M的坐標(biāo)為(0,2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)E為AH的中點(diǎn),點(diǎn)F為GH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接EB、FD,交點(diǎn)為G.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EB和FD的數(shù)量關(guān)系是 ;
(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EB和FD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過(guò)程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)?jiān)趫D3中求出∠EGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點(diǎn)H.
(1)如圖,①在圖中找出與∠DBA相等的角,并說(shuō)明理由;
②若∠BAC=100°,求∠DHE的度數(shù);
(2)若△ABC中,∠A=50°,直接寫(xiě)出∠DHE的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在的正方形網(wǎng)格中,點(diǎn)P是的邊OB上的一點(diǎn).
(1)過(guò)點(diǎn)P畫(huà)OB的垂線,交OA于點(diǎn)C;過(guò)點(diǎn)P畫(huà)OA的垂線,垂足為H;
(2)線段PH的長(zhǎng)度是點(diǎn)P到直線__________的距離;
(3)線段__________的長(zhǎng)度是點(diǎn)C到直線OB的距離;
(4)線段PC、PH、OC這三條線段大小關(guān)系是__________(用“<”號(hào)連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為12的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交BC于點(diǎn)G.則BG的長(zhǎng)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)單項(xiàng)式﹣2x3ym與5xn+1y的差是一個(gè)單項(xiàng)式,求的值;
(2)化簡(jiǎn)求值:(x2+5﹣4x3)﹣2(﹣2x3+5x﹣4),其中x=﹣2;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項(xiàng),得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè).
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為﹣20,B點(diǎn)對(duì)應(yīng)的數(shù)為100.
(1)請(qǐng)寫(xiě)出與A,B兩點(diǎn)距離相等的點(diǎn)M所對(duì)應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動(dòng),x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請(qǐng)列方程求出x,并指出點(diǎn)C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動(dòng),y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請(qǐng)列方程求出y并指出點(diǎn)D表示的數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com