精英家教網(wǎng)如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
分析:(1)①根據(jù)時間和速度分別求得兩個三角形中的邊的長,根據(jù)SAS判定兩個三角形全等.
②根據(jù)全等三角形應(yīng)滿足的條件探求邊之間的關(guān)系,再根據(jù)路程=速度×?xí)r間公式,先求得點P運動的時間,再求得點Q的運動速度;
(2)根據(jù)題意結(jié)合圖形分析發(fā)現(xiàn):由于點Q的速度快,且在點P的前邊,所以要想第一次相遇,則應(yīng)該比點P多走等腰三角形的兩個腰長.
解答:解:(1)①∵t=1s,
∴BP=CQ=3×1=3cm,
∵AB=10cm,點D為AB的中點,
∴BD=5cm.
又∵PC=BC-BP,BC=8cm,
∴PC=8-3=5cm,
∴PC=BD.
又∵AB=AC,
∴∠B=∠C,
在△BPD和△CQP中,
PC=BD
∠B=∠C
BP=CQ

∴△BPD≌△CQP.(SAS)
②∵vP≠vQ,
∴BP≠CQ,
若△BPD≌△CPQ,∠B=∠C,
則BP=PC=4cm,CQ=BD=5cm,
∴點P,點Q運動的時間t=
BP
3
=
4
3
s,
vQ=
CQ
t
=
5
4
3
=
15
4
cm/s;

(2)設(shè)經(jīng)過x秒后點P與點Q第一次相遇,
由題意,得
15
4
x=3x+2×10,
解得x=
80
3

∴點P共運動了
80
3
×3=80cm.
△ABC周長為:10+10+8=28cm,
若是運動了三圈即為:28×3=84cm,
∵84-80=4cm<AB的長度,
∴點P、點Q在AB邊上相遇,
∴經(jīng)過
80
3
s點P與點Q第一次在邊AB上相遇.
點評:此題主要是運用了路程=速度×?xí)r間的公式.熟練運用全等三角形的判定和性質(zhì),能夠分析出追及相遇的問題中的路程關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案