【題目】某日,正在我國(guó)南海海域作業(yè)的一艘大型漁船突然發(fā)生險(xiǎn)情,相關(guān)部門接到求救信號(hào)后,立即調(diào)遣一架直升飛機(jī)和一艘剛在南海巡航的漁政船前往救援.當(dāng)飛機(jī)到達(dá)距離海面3000米的高空C處,測(cè)得A處漁政船的俯角為60°,測(cè)得B處發(fā)生險(xiǎn)情漁船的俯角為30°,請(qǐng)問(wèn):此時(shí)漁政船和漁船相距多遠(yuǎn)?(結(jié)果保留根號(hào))

【答案】解:在Rt△CDA中,∠ACD=30°,CD=3000米, ∴AD=CDtan∠ACD=1000 米,
在Rt△CDB中,∠BCD=60°,
∴BD=CDtan∠BCD=3000 米,
∴AB=BD﹣AD=2000 米.
答:此時(shí)漁政船和漁船相距2000
【解析】在Rt△CDB中求出BD,在Rt△CDA中求出AD,繼而可得AB,也即此時(shí)漁政船和漁船的距離.
【考點(diǎn)精析】掌握關(guān)于仰角俯角問(wèn)題是解答本題的根本,需要知道仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣ x2 x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C

(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD與正方形AEFG起始時(shí)互相重合,現(xiàn)將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角∠BAE=α(0°<α<360°),則當(dāng)正方形的頂點(diǎn)F落在正方形的對(duì)角線AC或BD所在直線上時(shí),α=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠計(jì)劃每天生產(chǎn)零件個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃量相比有出入. 下表是某周的生產(chǎn)情況(超產(chǎn)數(shù)量記為正、減產(chǎn)數(shù)量記為負(fù)):

星期

增減

(1)由表可知該廠星期四生產(chǎn)零件 個(gè),這周實(shí)際生產(chǎn)零件 個(gè).(用含的代數(shù)式表示)

(2) 產(chǎn)量最高日比最低日多生產(chǎn)零件 個(gè).

(3) 若該周廠計(jì)劃每天生產(chǎn)零件數(shù)是,每個(gè)零件應(yīng)支付工資元,且每天超計(jì)劃數(shù)的零件每個(gè)另獎(jiǎng)元,那這周實(shí)際應(yīng)支付工資多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若點(diǎn)P1(﹣1,m),P2(﹣2,n)在反比例函數(shù)y= (k>0)的圖像上,則mn(填“>”“<”或“=”號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,DC∥AB,DA⊥AB,AD=4cm,DC=5cm,AB=8cm.如果點(diǎn)P由B點(diǎn)出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A點(diǎn)出發(fā)沿AB方向向點(diǎn)B勻速運(yùn)動(dòng),它們的速度均為1cm/s,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t s,解答下列問(wèn)題:

(1)當(dāng)t為何值時(shí),P,Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng)?
(2)設(shè)△PQB的面積為S,當(dāng)t為何值時(shí),S取得最大值,并求出最大值;
(3)當(dāng)△PQB為等腰三角形時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC=8 cm,BD=6cm,DH⊥AB于H,求DH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①、②分別是某種型號(hào)跑步機(jī)的實(shí)物圖與示意圖,已知踏板CD長(zhǎng)為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長(zhǎng)為0.8m,∠ACD為80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m). (參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C為線段AB的中點(diǎn),點(diǎn)D在線段CB上.

(1)圖中共有 條線段.

(2)圖中AD=AC+CD,BC=AB﹣AC,類似地,請(qǐng)你再寫出兩個(gè)有關(guān)線段的和與差的關(guān)系式:

.

(3)若AB=8,DB=1.5,求線段CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案