【題目】隨著移動終端設(shè)備的升級換代,手機己經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機的情況(選項:A.和同學(xué)親友聊天:B.學(xué)習(xí):C.購物:D.游戲:E.其他),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機抽取了若干名學(xué)生進行調(diào)查,得到如下圖表(部分信息未給出):
選項 | 頻數(shù) | 百分比 |
A | 10 | m |
B | n | 20% |
C | 5 | 10% |
D | p | 40% |
E | 5 | 10% |
合計 | 100% |
根據(jù)以上信息解答下列問題:
(1)m= ,n= ,p= ;
(2)補全條形統(tǒng)計圖;
(3)若該中學(xué)約有800名學(xué)生,估計全校學(xué)生中利用手機購物或玩游戲的共有多少人?
【答案】(1)20%,10,20;(2)見解析;(3) 400人.
【解析】
(1)根據(jù)C的人數(shù)除以C所占的百分比,求出總?cè)藬?shù),可得答案;
(2)根據(jù)(1)中求得數(shù)據(jù),補全統(tǒng)計圖即可;
(3)根據(jù)樣本估計總體,可得答案.
解:(1)因為調(diào)查的總?cè)藬?shù)為5÷0.1=50(人),
所以m=10÷50×100%=20%,
n=50×0.2=10,
p=50×0.4=20.
故答案為:20%、10、20.
(2)結(jié)合(1)中所求數(shù)據(jù),補全圖形如下:
(3)800×(0.1+0.4)=400(人).
答:估計全校學(xué)生中利用手機購物或玩游戲的共有400人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCB1中,AB=1,AB與直線l的夾角為30°,延長CB1交直線l于點A1,作正方形A1B1C1B2,延長C1B2交直線l于點A2,作正方形A2B2C2B3,延長C2B3交直線l于點A3,作正方形A3B3C3B4,…,依此規(guī)律,則A2016A2017=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知二次函數(shù)y=ax2﹣2ax﹣3a(a>0)圖象與x軸交于點A,B(點A在點B的左側(cè)),與y軸交于點C,頂點為D.
(1)求點A,B的坐標(biāo);
(2)若M為對稱軸與x軸交點,且DM=2AM.
①求二次函數(shù)解析式;
②當(dāng)t﹣2≤x≤t時,二次函數(shù)有最大值5,求t值;
③若直線x=4與此拋物線交于點E,將拋物線在C,E之間的部分記為圖象記為圖象P(含C,E兩點),將圖象P沿直線x=4翻折,得到圖象Q,又過點(10,﹣4)的直線y=kx+b與圖象P,圖象Q都相交,且只有兩個交點,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊中,點D在線段AC上,E為BC延長線上一點,且CD = CE,連接BD,連接AE.
(1)如圖1,若,求線段AD的長;
(2)如圖2,若F是線段BD的中點,連接AF,若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A1、A2、A3…在直線y=x上,點C1,C2,C3…在直線y=2x上,以它們?yōu)轫旤c依次構(gòu)造第一個正方形A1C1A2B1,第二個正方形A2C2A3B2…,若A2的橫坐標(biāo)是1,則B3的坐標(biāo)是_____,第n個正方形的面積是_____.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150704640/STEM/947823175bfc4b878475a9a15e16a258.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖在平面直角坐標(biāo)系中,過點A(0,2)的直線與⊙O相切于點C,與x軸交于點B且半徑為.
(1)求∠BAO的度數(shù).(2)求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com