【題目】如圖,在△ABC中,AB=AC,且點A的坐標為(﹣3,0),點C坐標為(0, ),點B在y軸的負半軸上,拋物線y=﹣ x2+bx+c經(jīng)過點A和點C
(1)求b,c的值;
(2)在拋物線的對稱軸上是否存在點Q,使得△ACQ為等腰三角形?若存在,直接寫出點Q的坐標;若不存在,請說明理由
(3)點P是線段AO上的一個動點,過點P作y軸的平行線交拋物線于點M,交AB于點E,探究:當點P在什么位置時,四邊形MEBC是平行四邊形,此時,請判斷四邊形AECM的形狀,并說明理由.
【答案】
(1)
解:∵點A的坐標為(﹣3,0),點C坐標為(0, ),點B在y軸的負半軸上,拋物線y=﹣ x2+bx+c經(jīng)過點A和點C,
∴ ,
解得: ;
(2)
解:在拋物線的對稱軸上存在點Q,使得△ACQ為等腰三角形,
當AQ=QC,如圖1,
由(1)得:y=﹣ x2﹣ x+ =﹣ (x+1)2+ ,
即拋物線對稱軸為:直線x=﹣1,則QO=1,AQ=2,
∵CO= ,QO=1,
∴QC=2,
∴AQ=QC,
∴Q(﹣1,0);
當AC=Q1C時,過點C作CF⊥直線x=﹣1,于一點F,
則FC=1,
∵AO=3,CO= ,
∴AC=2 ,
∴Q1C=2 ,
∴FQ1= ,故Q1的坐標為:(﹣1, + );
當AC=CQ2=2 時,由Q1的坐標可得;Q2(﹣1,﹣ + );
當AQ3=AC=2 時,則QQ3 =2 ,故Q3(﹣1,﹣2 ),根據(jù)對稱性可知Q4(﹣1,2 )(Q4和Q3關(guān)于x軸對稱)也符合題意,
綜上所述:符合題意的Q點的坐標為:(﹣1,0);(﹣1, + );(﹣1,﹣ + );(﹣1,﹣2 ),(﹣1,2 )
(3)
解:如圖2所示,
當四邊形MEBC是平行四邊形,則ME=BC,
∵AB=AC,且點A的坐標為(﹣3,0),點C坐標為(0, ),
∴B(0,﹣ ),
則BC=2 ,
設(shè)直線AB的解析式為:y=kx+e,
故 ,
解得: ,
故直線AB的解析式為:y=﹣ x﹣ ,
設(shè)E(x,﹣ x﹣ ),M(x,﹣ x2﹣ x+ ),
故ME=﹣ x2﹣ x+ + x+ =﹣ x2﹣ x+2 =2 ,
解得:x1=0(不合題意舍去),x2=﹣1,
故P點在(﹣1,0),此時四邊形MEBC是平行四邊形;
四邊形AECM是梯形,
理由:∵四邊形MEBC是平行四邊形,
∴MC∥AB,
∵CO= ,AO=3,
∴∠CAO=30°,
∵AC=AB,AO⊥BC,
∴∠BAO=30°,
∴∠BAC=60°,
∴△ABC是等邊三角形,
∵AC=BC,ME=BC,所以AC=ME,
∴四邊形AECM是等腰梯形.
【解析】(1)直接利用待定系數(shù)法求出拋物線解析式得出即可;(2)利用當AQ=QC,以及當AC=Q1C時,當AC=CQ2=2 時,當AQ3=AC=2 時,分別得出符合題意的答案即可;(3)利用平行四邊形的性質(zhì)首先得出BC的長,進而表示出線段ME的長,進而求出答案,再利用梯形的判定得出答案.
【考點精析】通過靈活運用二次函數(shù)的性質(zhì),掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】為推廣陽光體育“大課間”活動,我市某中學決定在學生中開設(shè)A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學生?
(2)請計算本項調(diào)查中喜歡“立定跳遠”的學生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學生中有3名男生,2名女生.現(xiàn)從這5名學生中任意抽取2名學生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2﹣2mx+m2+3(m是常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸沒有公共點;
(2)把該函數(shù)的圖象沿y軸向下平移多少個單位長度后,得到的函數(shù)的圖象與x軸只有一個公共點?
(3)將拋物線y=x2﹣2mx+m2+3(m是常數(shù))圖象在對稱軸左側(cè)部分沿直線y=3翻折得到新圖象為G,若與直線y=x+2有三個交點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的頂點坐標分別是A(x1 , y1),B(x2 , y2),C(x3 , y3),對于△ABC的橫長、縱長、縱橫比給出如下定義:
將|x1﹣x2|,|x2﹣x3|,|x3﹣x1|中的最大值,稱為△ABC的橫長,記作Dx;將|y1﹣y2|,|y2﹣y3|,|y3﹣y1|中的最大值,稱為△ABC的縱長,記作Dy;將 叫做△ABC的縱橫比,記作λ= .
例如:如圖1,
△ABC的三個頂點的坐標分別是A(0,3),B(2,1),C(﹣1,﹣2),則Dx=|2﹣(﹣1)|=3,Dy=|3﹣(﹣2)|=5,
所以λ= = .
(1)如圖2,
點A(1,0),
①點B(2,1),E(﹣1,2),
則△AOB的縱橫比λ1=
△AOE的縱橫比λ2=;
②點F在第四象限,若△AOF的縱橫比為1,寫出一個符合條件的點F的坐標;
③點M是雙曲線y= 上一個動點,若△AOM的縱橫比為1,求點M的坐標;
(2)如圖3,
點A(1,0),⊙P以P(0, )為圓心,1為半徑,點N是⊙P上一個動點,直接寫出△AON的縱橫比λ的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小聰計劃中考后參加“我的中國夢”夏令營活動,需要一名家長陪同,爸爸、媽媽用猜拳的方式確定由誰陪同,即爸爸、媽媽都隨機作出“石頭”、“剪刀”、“布”三種手勢(如圖)中的一種,規(guī)定:“石頭”勝“剪刀”,“剪刀”勝“布”,“布”勝“石頭”,手勢相同,不分勝負
(1)爸爸一次出“石頭”的概率是多少?
(2)媽媽一次獲勝的概率是多少?請用列表或畫樹狀圖的方法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸的正半軸上,且OA=3,OC=2,將矩形OABC向上平移4個單位得到矩形O1A1B1C1 .
(1)若反比例函數(shù)y= 和y= 的圖象分別經(jīng)過點B、B1 , 求k1和k2的值;
(2)將矩形O1A1B1C1向左平移得到O2A2B2C2 , 當點O2、B2在反比例函數(shù)y= 的圖象上時,求平移的距離和k3的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年3月28日是全國中小學生安全教育日,某學校為加強學生的安全意識,組織了全校1500名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題: 頻率分布表
分數(shù)段 | 頻數(shù) | 頻率 |
50.5﹣60.5 | 16 | 0.08 |
60.5﹣70.5 | 40 | 0.2 |
70.5﹣80.5 | 50 | 0.25 |
80.5﹣90.5 | m | 0.35 |
90.5﹣100.5 | 24 | n |
(1)這次抽取了名學生的競賽成績進行統(tǒng)計,其中:m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù) 的圖象上.若點A的坐標為(﹣2,﹣2),則k的值為( )
A.1
B.﹣3
C.4
D.1或﹣3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當前,“校園手機”現(xiàn)象已經(jīng)受到社會廣泛關(guān)注,某數(shù)學興趣小組對“是否贊成中學生帶手機進校園”的問題進行了社會調(diào)查.小文將調(diào)查數(shù)據(jù)作出如下不完整的整理: 頻數(shù)分布表
看法 | 頻數(shù) | 頻率 |
贊成 | 5 | |
無所謂 | 0.1 | |
反對 | 40 | 0.8 |
(1)請求出共調(diào)查了多少人;并把小文整理的圖表補充完整;
(2)小麗要將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計圖,則扇形圖中“贊成”的圓心角是多少度?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com