解:(1)由題意,動(dòng)點(diǎn)P的速度為每秒1個(gè)單位長度,運(yùn)動(dòng)時(shí)間為t秒,則OP=t,即:P(t,0)
(2)當(dāng)k=1時(shí),直線AN的解析式為:y=x-6,令y=0,則x=6,則AO=6
由題意得:PF∥OB,BF∥OP,∠AOB=90°,∴四邊形BFPO是矩形,
∴BF=OP=t,∴AQ=OP=t,PQ=6-2t
若四邊形BFQP是平行四邊形,如圖1,則BF=PQ,t=6-2t,解得:t=2,符合題意;
若四邊形BFPQ是平行四邊形,如圖2,則BF=PQ,t=2t-6,即點(diǎn)P與點(diǎn)A重合時(shí),此時(shí)四邊形BFPQ是矩形,故t=6符合題意.
(3)由題意得:C(t,
t-6),以C為頂點(diǎn)的拋物線解析式是y=(x-t)
2+
t-6;
當(dāng)k=
時(shí),直線AB解析式為:y=
x-6,同理可得:A(8,0),B(0,-6).
由(x-t)
2+
t-6=
x-6,得解:x
1=t,x
2=t+
如圖3,過點(diǎn)D作DE⊥CP于點(diǎn)E,則∠DEC=∠AOB=90°.
∵PC∥OB,∴∠OBA=∠ECD,
∴△DEC∽△AOB
∴
=
在Rt△AOB中,由勾股定理得:AB=
=
=10.
∵AO=8,AB=10,DE=(t+
)-t=
,
∴CD=
=
=
.
∴CD邊上的高=
=
,
∵∠AOB=90°,
∴∠COP=90°-∠BOC=∠OBA.
又∵CP⊥OA,即∠OPC=90°,
∴∠OPC=∠AOB=90°
∴Rt△OPC∽R(shí)t△BOA
∴
=
,即OP=
=
=
∴當(dāng)t=
時(shí),h的值最大.
分析:(1)根據(jù)P點(diǎn)的運(yùn)動(dòng)速度和運(yùn)動(dòng)時(shí)間可得到OP的長,則P點(diǎn)坐標(biāo)可求.
(2)從圖中可以看出,已知的條件有PQ∥BF,只需令PQ=BF就能得到以B、F、P、Q為頂點(diǎn)的四邊形是平行四邊形的結(jié)論,在求PQ的表達(dá)式時(shí)要注意P、Q的位置.
(3)首先要求出A、B、C、D四點(diǎn)的坐標(biāo),過D作PC的垂線交PC于E,根據(jù)D點(diǎn)坐標(biāo)和拋物線對稱軸方程,可確定E點(diǎn)坐標(biāo)及DE的長,根據(jù)構(gòu)建的相似三角形△CED、△BOA求出CD的長,此時(shí)能發(fā)現(xiàn)CD長為定值,而△OCD中CD邊上的高也是定值(可在△OAB中利用面積公式求得),所以O(shè)C邊越短、OC邊上的高h(yuǎn)就越大,因此當(dāng)h最大時(shí),OC應(yīng)垂直CD,即OC是CD邊的高,根據(jù)前面求得的OC長,結(jié)合相似三角形△OPC、△BOA求出OP的長,即可求得t的值.
點(diǎn)評:該題是圖形中的動(dòng)點(diǎn)問題,考查了二次函數(shù)、相似三角形、圖形面積的求法、特殊四邊形的判定和性質(zhì)等重要知識(shí);(3)的難度較大,能否找出h最大時(shí)OC的位置和大小是解答題目的關(guān)鍵所在.