【題目】如圖,已知直線y=﹣x+4與兩坐標(biāo)軸分別相交于點(diǎn)A,B兩點(diǎn),點(diǎn)C是線段AB上任意一點(diǎn),過C分別作CD⊥x軸于點(diǎn)D,CE⊥y軸于點(diǎn)E.雙曲線y=CD,CE分別交于點(diǎn)P,Q兩點(diǎn),若四邊形ODCE為正方形,且,則k的值是(

A. 4 B. 2 C. D.

【答案】B

【解析】四邊形ODCE為正方形,則OC是第一象限的角平分線,則解析式是y=x,即可求得C的坐標(biāo),根據(jù)反比例函數(shù)一定關(guān)于y=x對(duì)稱,則P、Q一定是對(duì)稱點(diǎn),則設(shè)Q的坐標(biāo)是(2,a),則DQ=EP=a,PC=CQ=2﹣a,根據(jù)正方形ODCE的面積﹣△ODQ的面積﹣△OEP的面積﹣△PCQ的面積=△OPQ的面積,即可列方程求得a的值,求得Q的坐標(biāo),利用待定系數(shù)法即可求得k的值.

四邊形ODCE為正方形,則OC是第一象限的角平分線,則解析式是y=x,

根據(jù)題意得: ,

解得: ,

C的坐標(biāo)是(2,2),

設(shè)Q的坐標(biāo)是(2,a),

DQ=EP=a,PC=CQ=2﹣a,

正方形ODCE的面積是:4,

S△ODQ=×2a=a,同理S△OPE=a,S△CPQ= (2﹣a)2 ,

4﹣a﹣a﹣ (2﹣a)2= ,

解得:a=1或﹣1(舍去),

Q的坐標(biāo)是(2,1),

把(2,1)代入得:k=2.

故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)在第一象限,點(diǎn)、的坐標(biāo)分別為、,,,直線軸于點(diǎn),若關(guān)于點(diǎn)成中心對(duì)稱,則點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)南北朝時(shí)期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做物不知數(shù)問題,原文如下:有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.同物幾何?

即:一個(gè)整數(shù)除以32,除以53,除以72,則這個(gè)整數(shù)為__________________.(寫出符合題意且不超過3003個(gè)正整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點(diǎn)處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了安全,請(qǐng)勿超速.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測(cè)車輛是否超速,在公路MN旁設(shè)立了觀測(cè)點(diǎn)C,從觀測(cè)點(diǎn)C測(cè)得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,CBN=60°,BC=200米,此車超速了嗎?請(qǐng)說明理由.

(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的平分線ADBC于點(diǎn)D,的兩邊分別與ABAC相交于M、N兩點(diǎn),且,若,則四邊形AMDN的面積為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示

1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△ABC;(其中A、B、C分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法)

2)直接寫出ABC三點(diǎn)的坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   ;

2)如圖,將直角三角板DOE繞點(diǎn)O順時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案