【題目】如圖,已知DE∥BC,CD是∠ACB的平分線,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度數(shù).
【答案】25度,85度
【解析】試題分析:由CD是∠ACB的平分線,∠ACB=50°,根據(jù)角平分線的性質(zhì),即可求得∠DCB的度數(shù),又由DE∥BC,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得∠EDC的度數(shù),根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得∠BDE的度數(shù),即可求得∠BDC的度數(shù).
試題解析:∵CD是∠ACB的平分線,∠ACB=50°, ∴∠BCD=∠ACB=25°, ∵DE∥BC,
∴∠EDC=∠DCB=25°,∠BDE+∠B=180°, ∵∠B=70°, ∴∠BDE=110°,
∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°. ∴∠EDC=25°,∠BDC=85°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設(shè)生產(chǎn)兩種產(chǎn)品的獲利總額為y (元),生產(chǎn)A產(chǎn)品x (件).
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣3,0)、B(5,0)、C(0,5)三點(diǎn),O為坐標(biāo)原點(diǎn)
(1)求此拋物線的解析式;
(2)若把拋物線y=ax2+bx+c(a≠0)向下平移個(gè)單位長度,再向右平移n(n>0)個(gè)單位長度得到新拋物線,若新拋物線的頂點(diǎn)M在△ABC內(nèi),求n的取值范圍;
(3)設(shè)點(diǎn)P在y軸上,且滿足∠OPA+∠OCA=∠CBA,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、軸分別相交于點(diǎn)C、B,與直線相交于
點(diǎn)A.
(1)點(diǎn)B、點(diǎn)C和點(diǎn)A的坐標(biāo)分別是(0, )、( ,0)、( , );
(2)求兩條直線與軸圍成的三角形的面積;
(3)在坐標(biāo)軸上是否存在一點(diǎn)Q,使△OAQ的面積等于6,若存在請直接寫出Q點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計(jì)算正確的是( )
A.2x4﹣x2=x2
B.(2x2)4=8x8
C.x2x3=x6
D.(﹣x)6÷(﹣x)2=x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點(diǎn)E.
(1)求證:△ABD≌△EBD;
(2)過點(diǎn)E作EF∥DA,交BD于點(diǎn)F,連接AF.求證:四邊形AFED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)(﹣1,y1)、(2,y2)是直線y=﹣2x+1上的兩點(diǎn),則y1y2(填“>”或“=”或“<”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com