【題目】如圖,點(diǎn)P是直線y=3上的動點(diǎn),連接PO并將PO繞P點(diǎn)旋轉(zhuǎn)90°到PO′,當(dāng)點(diǎn)O′剛好落在雙曲線(x>0)上時(shí),點(diǎn)P的橫坐標(biāo)所有可能值為_____.
【答案】,.
【解析】
分點(diǎn)P在由在y軸的左側(cè)和點(diǎn)P在y軸的右側(cè)兩種情況求解即可.
當(dāng)點(diǎn)P在由在y軸的左側(cè)時(shí),如圖1,過點(diǎn)P作PM⊥x軸于點(diǎn)M,過點(diǎn)O′作O′N垂直于直線y=3于點(diǎn)N,
∵∠OPN+∠NP O′=90°,∠P O′N+∠NP O′=90°,
∴∠OPN=∠P O′N,
∵直線y=3與x軸平行,
∴∠POM=∠O P N ,
∴∠POM=∠P O′N,
在△POM和△P O′N中,
,
∴△POM≌△P O′N,
∴OM= O′N,PM=PN,
設(shè)點(diǎn)P的橫坐標(biāo)為t,則OM= O′N=-t,PM=PN=3,
∴GN=3+t,
∴點(diǎn)O′的坐標(biāo)為(3+t,3-t),
∵點(diǎn)O′在雙曲線(x>0)上,
∴(3+t)(3-t)=6,
解得,t=(舍去)或t=-,
∴點(diǎn)P的橫坐標(biāo)為-;
當(dāng)點(diǎn)P在由在y軸的右側(cè)時(shí),
如圖2,過點(diǎn)O′作O′H垂直于直線y=3于點(diǎn)H,
類比圖1的方法易求點(diǎn)P的橫坐標(biāo)為,
如圖3,過點(diǎn)P作PE⊥x軸于點(diǎn)E,過點(diǎn)O′作O′F垂直于直線y=3于點(diǎn)F,
類比圖1的方法易求點(diǎn)P的橫坐標(biāo)為,
綜上,點(diǎn)P的橫坐標(biāo)為,.
故答案為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,已知點(diǎn)在線段上,且,,點(diǎn)、分別是、的中點(diǎn),求線段的長度;
(2)若點(diǎn)是線段上任意一點(diǎn),且,,點(diǎn)、分別是、的中點(diǎn),請直接寫出線段的長度;(結(jié)果用含、的代數(shù)式表示)
(3)在(2)中,把點(diǎn)是線段上任意一點(diǎn)改為:點(diǎn)是直線上任意一點(diǎn),其他條件不變,則線段的長度會變化嗎?若有變化,求出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D、E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)判斷∠ABE與∠ACD的數(shù)量關(guān)系,并說明理由;
(2)求證:過點(diǎn)A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON =∠ACB = 90°,AC = BC,AB =5,△ABC頂點(diǎn)A、C分別在ON、OM上,點(diǎn)D是AB邊上的中點(diǎn),當(dāng)點(diǎn)A在邊ON上運(yùn)動時(shí),點(diǎn)C隨之在邊OM上運(yùn)動,則OD的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)材料,解答問題
如圖,數(shù)軸上有點(diǎn),對應(yīng)的數(shù)分別是6,-4,4,-1,則兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為.反之,表示有理數(shù)在數(shù)軸上的對應(yīng)點(diǎn)之間的距離,稱之為絕對值的幾何意義.
問題應(yīng)用1:
(1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對應(yīng)的的值為___________;
(2)方程的解____________;
(3)方程的解______________ ;
問題應(yīng)用2:
如圖,若數(shù)軸上表示的點(diǎn)為.
(4)的幾何意義是數(shù)軸上_____________,當(dāng)__________,的值最小是____________;
(5)的幾何意義是數(shù)軸上_______,的最小值是__________,此時(shí)點(diǎn)在數(shù)軸上應(yīng)位于__________上;
(6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前“微信”、“支付寶”、“共享單車”和“網(wǎng)購”給我們的生活帶來了很多便利,初二數(shù)學(xué)小組在校內(nèi)對“你最認(rèn)可的四大新生事物”進(jìn)行調(diào)查,隨機(jī)調(diào)查了人(每名學(xué)生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.
(1)根據(jù)圖中的信息求出_______,_______;
(2)請你幫助他們將這兩個(gè)統(tǒng)計(jì)圖補(bǔ)全,并計(jì)算扇形統(tǒng)計(jì)圖中“支付寶”部分所對應(yīng)的圓心角的度數(shù)為_____;
(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學(xué)生中,大約有多少人最認(rèn)可“微信”這一新生事物?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,OP是∠BOC的平分線,EO⊥AB于點(diǎn)O,F(xiàn)O⊥CD于點(diǎn)O.
(1)圖中除直角外,還有其他相等的角,請寫出兩對:①______________;②______________.
(2)如果∠AOD=40°,那么:
①根據(jù)__________,可得∠BOC=________;
②求∠POF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C(0,2),點(diǎn)M(m,n)是拋物線上一動點(diǎn),位于對稱軸的左側(cè),并且不在坐標(biāo)軸上,過點(diǎn)M作x軸的平行線交y軸于點(diǎn)Q,交拋物線于另一點(diǎn)E,直線BM交y軸于點(diǎn)F.
(1)求拋物線的解析式,并寫出其頂點(diǎn)坐標(biāo);
(2)當(dāng)S△MFQ:S△MEB=1:3時(shí),求點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com