【題目】如圖,在△ABC和△DEF中,∠ACB=∠EFD=90°,點(diǎn)B、F、C、D在同一直線上,已知AB⊥DE,且AB=DE,AC=6,EF=8,DB=10,則CF的長(zhǎng)度為___________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(x1,y1)、B(x2,y2)在二次函數(shù)y=x2+mx+n的圖象上,當(dāng)x1=1、x2=3時(shí),y1=y2.
(1)①求m;②若拋物線與x軸只有一個(gè)公共點(diǎn),求n的值.
(2)若P(a,b1),Q(3,b2)是函數(shù)圖象上的兩點(diǎn),且b1>b2,求實(shí)數(shù)a的取值范圍.
(3)若對(duì)于任意實(shí)數(shù)x1、x2都有y1+y2≥2,求n的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC 中,AD 是 BC 邊上的中線.
(1)畫出與△ACD 關(guān)于點(diǎn) D 成中心對(duì)稱的三角形;
(2)找出與 AC 相等的線段;
(3)探索:△ABC 中,AB+AC 與中線 AD 之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=20°,點(diǎn)M、N分別是邊OA、OB上的定點(diǎn),點(diǎn)P、Q分別是邊OB、OA上的動(dòng)點(diǎn),記∠MPQ=,∠PQN=,當(dāng)MP+PQ+QN最小時(shí),則的值為( )
A. 10°B. 20°C. 40°D. 60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀并解決問題:有趣的勾股數(shù)組
定義:一般地,若三角形三邊長(zhǎng),,都是正整數(shù),且滿足,那么數(shù)組稱為勾股數(shù)組.
關(guān)于勾股數(shù)組的研究我國(guó)歷史上有過非常輝煌的成就,根據(jù)我國(guó)古代數(shù)學(xué)書《周髀算經(jīng)》記載,在約公元前1100年,人們就已經(jīng)知道“勾廣三,股修四,徑隅五”(古人把較短的直角邊稱為勾,較長(zhǎng)直角邊稱為股,而斜邊則成稱為弦),即知道了勾股數(shù)組,后來人們發(fā)現(xiàn)并證明了勾股定理.
公元263年魏朝劉徽注《九章算術(shù)》,文中除提到勾股數(shù)組以外,還提到,,,等勾股數(shù)組.
設(shè),是兩個(gè)正整數(shù),且,三角形三邊長(zhǎng),,都是正整數(shù).
下表中的,,可以組成一些有規(guī)律的勾股數(shù)組:
2 | 1 | 3 | 4 | 5 |
3 | 2 | 5 | 12 | 13 |
4 | 1 | 15 | 8 | 17 |
4 | 3 | 7 | 24 | 25 |
5 | 2 | 21 | 20 | 29 |
5 | 4 | 9 | 40 | 41 |
6 | 1 | 35 | 12 | 37 |
6 | 5 | 11 | 60 | 61 |
7 | 2 | 45 | 28 | 53 |
7 | 4 | 33 | 56 | 65 |
7 | 6 | 13 | 84 | 85 |
請(qǐng)你仔細(xì)觀察這個(gè)表格,解答下列問題:
(1)表中和,的等量關(guān)系式是________;
(2)表中的勾股數(shù)組用只含,的代數(shù)式表示為________;
(3)小明通過研究表中數(shù)據(jù)發(fā)現(xiàn):若勾股數(shù)組中,弦與股的差為1,則勾股數(shù)的形式可表述為(,為正整數(shù)),請(qǐng)你用含的代數(shù)式表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點(diǎn)在上,平分,且,連接并延長(zhǎng)與的延長(zhǎng)線交于點(diǎn),連接,若,則面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ABD中,∠BAC=∠ABD=90°,點(diǎn)E為AD邊上的一點(diǎn),且AC=AE,連接CE交AB于點(diǎn)G,過點(diǎn)A作AF⊥AD交CE于點(diǎn)F.
(1)求證:△AGE≌△AFC;
(2)若AB=AC,求證:AD=AF+BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】終身學(xué)習(xí)是學(xué)習(xí)型社會(huì)的核心內(nèi)容,努力建設(shè)“學(xué)習(xí)型家庭”也是一個(gè)重要組成部分.為了解“學(xué)習(xí)型家庭”情況,某社區(qū)對(duì)部分家庭六月份的平均每天看書學(xué)習(xí)時(shí)間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)本次抽樣調(diào)查了多少個(gè)家庭;
(2)將圖①中的條形圖補(bǔ)充完整;
(3)學(xué)習(xí)時(shí)間在1~1.5小時(shí)的部分對(duì)應(yīng)的扇形圓心角的度數(shù)是多少;
(4)若該社區(qū)有家庭有5000個(gè),請(qǐng)你估計(jì)該社區(qū)學(xué)習(xí)時(shí)間不少于1小時(shí)的約有多少個(gè)家庭?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO;⑤S△AOC+S△AOB=.其中正確的結(jié)論是( )
A.①②③⑤B.①②③④C.①②③④⑤D.①②③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com