【題目】老王有一批貨物要從A地運往B地準備租用某汽車運輸公司的甲、乙兩種貨車若干輛,經(jīng)了解,這兩種貨車兩次運載貨物的情況如下表所示:(每次都是滿載)

第一次

第二次

2

5

3

6

累計貨運量

15.5t

35t

1)甲、乙兩種貨車每輛各可運貨物多少噸?

2)現(xiàn)老王租用該公司甲貨車3輛,乙貨車5輛,剛好將這批貨物運完(滿載)若每噸貨的運費為30元,則老王應付運費多少元?

【答案】1)每輛甲貨車可運貨4t,每輛乙貨車可運貨2.5t;(2)老王應付運費735元.

【解析】

1)設每輛甲貨車可運貨xt,每輛乙貨車可運貨yt,根據(jù)這兩種貨車兩次運載貨物的情況統(tǒng)計表,即可得出關于x,y的二元一次方程組,解之即可得出結(jié)論;

2)根據(jù)總運費=每噸運費×這批貨物的總重量,即可得出結(jié)論.

解:(1)設每輛甲貨車可運貨xt,每輛乙貨車可運貨yt,

依題意,得:,

解得:

答:每輛甲貨車可運貨4t,每輛乙貨車可運貨2.5t

230×(3×4+5×2.5)=735(元).

答:老王應付運費735元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線交BC于點F,交△ABC的外接圓⊙O于點D,連接BD,過點D作直線DM,使∠BDM=∠DAC. (Ⅰ)求證:直線DM是⊙O的切線;
(Ⅱ)求證:DE2=DFDA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設x1、x2是方程x2﹣4x+m=0的兩個根,且x1+x2﹣x1x2=1,則x1+x2= , m=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,C=90°,AC=BC,過點C在ABC外作直線MN,AMMN于M,BNMN于N。

(1)求證:MN=AM+BN;

(2)若過點C在ABC內(nèi)作直線MN,AMMN于M,BNMN于N,則AM、BN與MN之間有什么關系?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點,沿直線BP將△ABP翻折至△EBP(點A的對應點為點E),PECD相交于點O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長.

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH,再利用等量代換得到PE=DH.

(2) DP=x, RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OED=∠E=90°DOP=∠EOH,

∴△DOP≌△EOH,

OP=OH,

PO+OE=OH+OD

PE=DH.

2)解:設DP=x,則EH=x,BH=10﹣x,

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2,

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場選購A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進價比B品牌每套套裝進價多2.5元,已知用200元購進A種套裝的數(shù)量是用75元購進B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進價分別為多少元?

(2)若A品牌套裝每套售價為13元,B品牌套裝每套售價為9.5元,店老板決定,購進B品牌的數(shù)量比購進A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購進A品牌工具套裝多少套?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點A0,a),Cb,0)滿足D為線段AC的中點.在平面直角坐標系中,以任意兩點Px1,y1)、Qx2y2)為端點的線段中點坐標為,

1)則A點的坐標為   ;點C的坐標為   D點的坐標為   

2)已知坐標軸上有兩動點PQ同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.設運動時間為tt0)秒.問:是否存在這樣的t,使SODPSODQ,若存在,請求出t的值;若不存在,請說明理由.

3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CEOF于點H,當點E在線段OA上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,ABC的三個頂點坐標分別為A0,4),B2,4),C3,﹣1).

1)試在平面直角坐標系中,標出A、BC三點;

2)求ABC的面積.

3)若A1B1C1ABC關于x軸對稱,寫出A1、B1、C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(11),第2次接著運動到點(2,0),第3次接著運動到點(3,2),,按這樣的運動規(guī)律,經(jīng)過第2017次運動后,動點P的坐標是______

查看答案和解析>>

同步練習冊答案